Step-by-Step Tutorial: Building "Bagoodex Web Search"
This tutorial provides a structured walkthrough to create "Bagoodex Web Search," an open-source Perplexity-like app built with Python, Gradio, and external APIs. We'll be using the AI/ML API for AI capabilities.
AI/ML API
AI/ML API is a game-changing platform for developers and SaaS entrepreneurs looking to integrate cutting-edge AI capabilities into their products. It offers a single point of access to over 200 state-of-the-art AI models, covering everything from NLP to computer vision.
Key Features for Developers:
- Extensive Model Library: 200+ pre-trained models for rapid prototyping and deployment. π
- Customization Options: Fine-tune models to fit your specific use case. π―
- Developer-Friendly Integration: RESTful APIs and SDKs for seamless incorporation into your stack. π οΈ
- Serverless Architecture: Focus on coding, not infrastructure management. βοΈ
Deep Dive into AI/ML API Documentation (very detailed, canβt agree more).
Step 1: Setting Up the Environment
1.1 Create a Virtual Environment:
python -m venv .venv
source .venv/bin/activate
1.2 Install Dependencies: Create and populate [requirements.txt]
with:
openai
gradio
python-dotenv
requests
pytube
Then install them:
pip install -r requirements.txt
1.3 Environment Variables: Create a .env
file with your API keys:
AIML_API_KEY=your_api_key
GOOGLE_MAPS_API_KEY=your_google_maps_api_key
Here's a brief tutorial: How to get API Key from AI/ML API. Quick step-by-step tutorial with screenshots for better understanding.
1.4 Git Ignore: Add .gitignore
:
.env
.venv
__pycache__
*.pyc
.DS_Store
Step 2: Project Structure
Your final project directory should look like:
Bagoodex_Web_Search/
βββ .env
βββ .gitignore
βββ requirements.txt
βββ app.py
βββ bagoodex_client.py
βββ helpers.py
βββ prompts.py
βββ r_types.py
Step 3: Key Files Explained
3.1 [bagoodex_client.py]
Implements API interactions with
bagoodex
and GPT services.Import necessary modules:
import os
import requests
from openai import OpenAI
from dotenv import load_dotenv
from r_types import ChatMessage
from prompts import SYSTEM_PROMPT_BASE, SYSTEM_PROMPT_MAP
from typing import List
- Load environment variables and set up the API client:
load_dotenv()
API_KEY = os.getenv("AIML_API_KEY")
API_URL = "https://api.aimlapi.com"
- Define the
BagoodexClient
class:
class BagoodexClient:
def __init__(self, api_key=API_KEY, api_url=API_URL):
self.api_key = api_key
self.api_url = api_url
self.client = OpenAI(base_url=self.api_url, api_key=self.api_key)
- Includes methods:
-
complete_chat()
: Handles general chat interactions.
-
def complete_chat(self, query):
"""
Calls the standard chat completion endpoint using the provided query.
Returns the generated followup ID and the text response.
"""
response = self.client.chat.completions.create(
model="bagoodex/bagoodex-search-v1",
messages=[
ChatMessage(role="user", content=SYSTEM_PROMPT_BASE),
ChatMessage(role="user", content=query)
],
)
followup_id = response.id # the unique ID for follow-up searches
answer = response.choices[0].message.content
return followup_id, answer
-
base_qna()
: Handles basic Q&A interactions. Basically we'll use this for follow-up questions. It's pretty reusable. We should pass the different system prompts based on our use case.
def base_qna(self, messages: List[ChatMessage], system_prompt=SYSTEM_PROMPT_BASE):
response = self.client.chat.completions.create(
model="gpt-4o",
messages=[
ChatMessage(role="user", content=system_prompt),
*messages
],
)
return response.choices[0].message.content
- Retrieves IDs for fetching follow-up resources (links, images, videos, maps).
def get_links(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/links", headers=headers, params=params
)
return response.json()
def get_images(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/images", headers=headers, params=params
)
return response.json()
def get_videos(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/videos", headers=headers, params=params
)
return response.json()
def get_local_map(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/local-map", headers=headers, params=params
)
return response.json()
def get_knowledge(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/knowledge", headers=headers, params=params
)
return response.json()
Note: First, you must first call the standard chat completion endpoint complete_chat()
with your query. The chat completion endpoint returns an ID, which must then be passed as the sole input parameter followup_id
to the bagoodex/links
, bagoodex/images
, bagoodex/videos
, bagoodex/local-map
and bagoodex/knowledge
endpoints.
3.2 [app.py]
- Import necessary modules:
import os
import gradio as gr
from bagoodex_client import BagoodexClient
from r_types import ChatMessage
from prompts import (
SYSTEM_PROMPT_FOLLOWUP,
SYSTEM_PROMPT_MAP,
SYSTEM_PROMPT_BASE,
SYSTEM_PROMPT_KNOWLEDGE_BASE
)
from helpers import (
embed_video,
format_links,
embed_google_map,
format_knowledge,
format_followup_questions
)
- Initialize the
BagoodexClient
:
client = BagoodexClient()
- Central application logic.
# ----------------------------
# Chat & Follow-up Functions
# ----------------------------
def chat_function(message, history, followup_state, chat_history_state):
"""
Process a new user message.
Appends the message and response to the conversation,
and retrieves follow-up questions.
"""
# complete_chat returns a new followup id and answer
followup_id_new, answer = client.complete_chat(message)
# Update conversation history (if history is None, use an empty list)
if history is None:
history = []
updated_history = history + [ChatMessage({"role": "user", "content": message}),
ChatMessage({"role": "assistant", "content": answer})]
# Retrieve follow-up questions using the updated conversation
followup_questions_raw = client.base_qna(
messages=updated_history, system_prompt=SYSTEM_PROMPT_FOLLOWUP
)
# Format them using the helper
followup_md = format_followup_questions(followup_questions_raw)
return answer, followup_id_new, updated_history, followup_md
def handle_followup_click(question, followup_state, chat_history_state):
"""
When a follow-up question is clicked, send it as a new message.
"""
if not question:
return chat_history_state, followup_state, ""
# Process the follow-up question via complete_chat
followup_id_new, answer = client.complete_chat(question)
updated_history = chat_history_state + [ChatMessage({"role": "user", "content": question}),
ChatMessage({"role": "assistant", "content": answer})]
# Get new follow-up questions
followup_questions_raw = client.base_qna(
messages=updated_history, system_prompt=SYSTEM_PROMPT_FOLLOWUP
)
followup_md = format_followup_questions(followup_questions_raw)
return updated_history, followup_id_new, followup_md
- Next setup
Local map
andKnowledge base
functions.
def handle_local_map_click(followup_state, chat_history_state):
"""
On local map click, try to get a local map.
If issues occur, fall back to using the SYSTEM_PROMPT_MAP.
"""
if not followup_state:
return chat_history_state
try:
result = client.get_local_map(followup_state)
if result:
map_url = result.get('link', '')
# Use helper to produce an embedded map iframe
html = embed_google_map(map_url)
# Fall back: use the base_qna call with SYSTEM_PROMPT_MAP
result = client.base_qna(
messages=chat_history_state, system_prompt=SYSTEM_PROMPT_MAP
)
# Assume result contains a 'link' field
html = embed_google_map(result.get('link', ''))
new_message = ChatMessage({"role": "assistant", "content": html})
return chat_history_state + [new_message]
except Exception:
return chat_history_state
def handle_knowledge_click(followup_state, chat_history_state):
"""
On knowledge base click, fetch and format knowledge content.
"""
if not followup_state:
return chat_history_state
try:
print('trying to get knowledge')
result = client.get_knowledge(followup_state)
knowledge_md = format_knowledge(result)
if knowledge_md == 0000:
print('falling back to base_qna')
# Fall back: use the base_qna call with SYSTEM_PROMPT_KNOWLEDGE_BASE
result = client.base_qna(
messages=chat_history_state, system_prompt=SYSTEM_PROMPT_KNOWLEDGE_BASE
)
knowledge_md = format_knowledge(result)
new_message = ChatMessage({"role": "assistant", "content": knowledge_md})
return chat_history_state + [new_message]
except Exception:
return chat_history_state
- Advanced search functions.
# ----------------------------
# Advanced Search Functions
# ----------------------------
def perform_image_search(followup_state):
if not followup_state:
return []
result = client.get_images(followup_state)
# For images we simply return a list of original URLs
return [item.get("original", "") for item in result]
def perform_video_search(followup_state):
if not followup_state:
return "<p>No followup ID available.</p>"
result = client.get_videos(followup_state)
# Use the helper to produce the embed iframes (supports multiple videos)
return embed_video(result)
def perform_links_search(followup_state):
if not followup_state:
return gr.Markdown("No followup ID available.")
result = client.get_links(followup_state)
return format_links(result)
- Uses
Gradio
for UI. Settign up CSS.
# ----------------------------
# UI Build
# ----------------------------
css = """
#chatbot {
height: 100%;
}
h1, h2, h3, h4, h5, h6 {
text-align: center;
display: block;
}
"""
- Handles chat, follow-up interactions, and advanced search features (images, videos, links).
with gr.Blocks(css=css, fill_height=True) as demo:
gr.Markdown("""
## like perplexity, but with less features.
#### built by [@abdibrokhim](https://yaps.gg).
""")
# State variables to hold followup ID and conversation history, plus follow-up questions text
followup_state = gr.State(None)
chat_history_state = gr.State([]) # holds conversation history as a list of messages
followup_md_state = gr.State("") # holds follow-up questions as Markdown text
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
btn_local_map = gr.Button("Local Map Search (coming soon...)", variant="secondary", size="sm", interactive=False)
btn_knowledge = gr.Button("Knowledge Base (coming soon...)", variant="secondary", size="sm", interactive=False)
# The ChatInterface now uses additional outputs for both followup_state and conversation history,
# plus follow-up questions Markdown.
chat = gr.ChatInterface(
fn=chat_function,
type="messages",
additional_inputs=[followup_state, chat_history_state],
additional_outputs=[followup_state, chat_history_state, followup_md_state],
)
# Button callbacks to append local map and knowledge base results to chat
btn_local_map.click(
fn=handle_local_map_click,
inputs=[followup_state, chat_history_state],
outputs=chat.chatbot
)
btn_knowledge.click(
fn=handle_knowledge_click,
inputs=[followup_state, chat_history_state],
outputs=chat.chatbot
)
# Radio-based follow-up questions
followup_radio = gr.Radio(
choices=[],
label="Follow-up Questions (select one and click 'Send Follow-up')"
)
btn_send_followup = gr.Button("Send Follow-up")
# When the user clicks "Send Follow-up", the selected question is passed
# to handle_followup_click
btn_send_followup.click(
fn=handle_followup_click,
inputs=[followup_radio, followup_state, chat_history_state],
outputs=[chat.chatbot, followup_state, followup_md_state]
)
# Update the radio choices when followup_md_state changes
def update_followup_radio(md_text):
"""
Parse Markdown lines to extract questions starting with '- '.
"""
lines = md_text.splitlines()
questions = []
for line in lines:
if line.startswith("- "):
questions.append(line[2:])
return gr.update(choices=questions, value=None)
followup_md_state.change(
fn=update_followup_radio,
inputs=[followup_md_state],
outputs=[followup_radio]
)
with gr.Column(scale=1):
gr.Markdown("### Advanced Search Options")
with gr.Column(variant="panel"):
btn_images = gr.Button("Search Images")
btn_videos = gr.Button("Search Videos")
btn_links = gr.Button("Search Links")
gallery_output = gr.Gallery(label="Image Results", columns=2)
video_output = gr.HTML(label="Video Results") # HTML for embedded video iframes
links_output = gr.Markdown(label="Links Results")
btn_images.click(
fn=perform_image_search,
inputs=[followup_state],
outputs=[gallery_output]
)
btn_videos.click(
fn=perform_video_search,
inputs=[followup_state],
outputs=[video_output]
)
btn_links.click(
fn=perform_links_search,
inputs=[followup_state],
outputs=[links_output]
)
demo.launch()
Questions you may consider to ask:
how to make slingshot?
who created light (e.g., electricity) Tesla or Edison in quick short?
3.2 [helpers.py]
- Utility functions for formatting results:
- import the necessary modules:
from dotenv import load_dotenv
import os
import gradio as gr
import urllib.parse
import re
from pytube import YouTube
from typing import List, Optional, Dict
from r_types import (
SearchVideosResponse,
SearchImagesResponse,
SearchLinksResponse,
LocalMapResponse,
KnowledgeBaseResponse
)
import json
-
embed_video()
for YouTube videos
def get_video_id(url: str) -> Optional[str]:
"""
Safely retrieve the YouTube video_id from a given URL using pytube.
Returns None if the URL is invalid or an error occurs.
"""
if not url:
return None
try:
yt = YouTube(url)
return yt.video_id
except Exception:
# If the URL is invalid or pytube fails, return None
return None
def embed_video(videos: List[SearchVideosResponse]) -> str:
"""
Given a list of video data (with 'link' and 'title'),
returns an HTML string of embedded YouTube iframes.
"""
if not videos:
return "<p>No videos found.</p>"
# Collect each iframe snippet
iframes = []
for video in videos:
url = video.get("link", "")
video_id = get_video_id(url)
if not video_id:
# Skip invalid or non-parsable links
continue
title = video.get("title", "").replace('"', '\\"') # Escape quotes
iframe = f"""
<iframe
width="560"
height="315"
src="https://www.youtube.com/embed/{video_id}"
title="{title}"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
"""
iframes.append(iframe)
# If no valid videos after processing, return a fallback message
if not iframes:
return "<p>No valid YouTube videos found.</p>"
# Join all iframes into one HTML string
return "\n".join(iframes)
-
format_links()
for links
def format_links(links) -> str:
"""
Convert a list of {'title': str, 'link': str} objects
into a bulleted Markdown string with clickable links.
"""
if not links:
return "No links found."
links_md = "**Links:**\n"
for url in links:
title = url.rstrip('/').split('/')[-1]
links_md += f"- [{title}]({url})\n"
return links_md
-
embed_google_map()
for maps
def embed_google_map(map_url: str) -> str:
"""
Extracts a textual location from the given Google Maps URL
and returns an embedded Google Map iframe for that location.
Assumes you have a valid API key in place of 'YOUR_API_KEY'.
"""
load_dotenv()
GOOGLE_MAPS_API_KEY = os.getenv("GOOGLE_MAPS_API_KEY")
if not map_url:
return "<p>Invalid Google Maps URL.</p>"
# Attempt to extract "San+Francisco,+CA" from the URL
match = re.search(r"/maps/place/([^/]+)", map_url)
if not match:
return "Invalid Google Maps URL. Could not extract location."
location_text = match.group(1)
# Remove query params or additional slashes from the captured group
location_text = re.split(r"[/?]", location_text)[0]
# URL-encode location to avoid issues with special characters
encoded_location = urllib.parse.quote(location_text, safe="")
embed_html = f"""
<iframe
width="600"
height="450"
style="border:0"
loading="lazy"
allowfullscreen
src="https://www.google.com/maps/embed/v1/place?key={GOOGLE_MAPS_API_KEY}&q={encoded_location}">
</iframe>
"""
return embed_html
-
format_knowledge()
for knowledge base info
def format_knowledge(raw_result: str) -> str:
"""
Given a dictionary of knowledge data (e.g., about a person),
produce a Markdown string summarizing that info.
"""
if not raw_result:
return 0000
# Clean up the raw JSON string
clean_json_str = cleanup_raw_json(raw_result)
print('Knowledge Data: ', clean_json_str)
try:
# Parse the cleaned JSON string
result = json.loads(clean_json_str)
title = result.get("title", "...")
type_ = result.get("type", "...")
born = result.get("born", "...")
died = result.get("died", "...")
content = f"""
**{title}**
Type: {type_}
Born: {born}
Died: {died}
"""
return content
except json.JSONDecodeError:
return "Error: Failed to parse knowledge data."
- Set up
format_followup_questions()
function that formats follow-up questions
def format_followup_questions(raw_questions: str) -> str:
"""
Extracts and formats follow-up questions from a raw JSON-like string.
The input string may contain triple backticks ("`\``json ... `\``") which need to be removed before parsing.
Expected input format:
"`\``json"
{
"followup_question": [
"What materials are needed to make a slingshot?",
"How to make a slingshot more powerful?"
]
}
"`\``"
Returns a Markdown-formatted string with the follow-up questions.
"""
if not raw_questions:
return "No follow-up questions available."
# Clean up the raw JSON string
clean_json_str = cleanup_raw_json(raw_questions)
try:
# Parse the cleaned JSON string
questions_dict = json.loads(clean_json_str)
# Ensure the expected key exists
followup_list = questions_dict.get("followup_question", [])
if not isinstance(followup_list, list) or not followup_list:
return "No follow-up questions available."
# Format the questions into Markdown
questions_md = "### Follow-up Questions\n\n"
for question in followup_list:
questions_md += f"- {question}\n"
return questions_md
except json.JSONDecodeError:
return "Error: Failed to parse follow-up questions."
-
cleanup_row_json()
function to clean up raw JSON strings
def cleanup_raw_json(raw_json: str) -> str:
"""
Remove triple backticks and 'json' from the beginning and end of a raw JSON string.
"""
return re.sub(r"`\``json|``\`", "", raw_json).strip()
3.3 [prompts.py]
- Contains system prompts for various tasks: For example:
SYSTEM_PROMPT_BASE
- For general chat interactions.
SYSTEM_PROMPT_BASE = """
######SYSTEM INIATED######
You will be given a conversation chat (e.g., text/ paragraph).
Answer the given conversation chat with a relevant response.
######NOTE######
Be nice and polite in your responses!
######SYSTEM SHUTDOWN######
"""
SYSTEM_PROMPT_MAP
- For providing places based on the given content.
SYSTEM_PROMPT_MAP = """
######SYSTEM INIATED######
You will be given a content from conversation chat (e.g., text/ paragraph).
Your task is to analyze the given content and provide different types of places as close as possible to the given content.
For exampl: If the given content (conversation chat) was about "How to make a slingshot", you can provide places like "Hardware store", "Woodworking shop", "Outdoor sports store", etc.
Make sure the places you provide are relevant to the given content. And as much as close to the given content, the better.
Your final output should be a list of places.
Here's JSON format example:
"`\``json"
{
"places": ["Hardware store", "Woodworking shop", "Outdoor sports store"]
}
"`\``"
######NOTE######
Make sure to return only JSON data! Nothing else!
######SYSTEM SHUTDOWN######
"""
SYSTEM_PROMPT_FOLLOWUP
- For generating follow-up questions based on the given content.
SYSTEM_PROMPT_FOLLOWUP = """
######SYSTEM INIATED######
You will be given a content from conversation chat (e.g., text/ paragraph).
Your task is to analyze the given content and provide a follow-up question based on the given content.
For example: If the given content (conversation chat) was about "How to make a slingshot", you can provide a follow-up question like "What materials are needed to make a slingshot?".
Make sure the follow-up question you provide is relevant to the given content.
Your final output should be a List of follow-up question.
Here's JSON format example:
"`\``json"
{
"followup_question": ["What materials are needed to make a slingshot?", "How to make a slingshot more powerful?"]
}
"`\``"
######NOTE######
Make sure to return only JSON data! Nothing else!
######SYSTEM SHUTDOWN######
"""
SYSTEM_PROMPT_KNOWLEDGE_BASE
- For generating knowledge base responses based on the given content.
SYSTEM_PROMPT_KNOWLEDGE_BASE = """
######SYSTEM INIATED######
You will be given a content from conversation chat (e.g., text/ paragraph).
Your task is to analyze the given content and provide a knowledge base response based on the given content.
For example: If the given content (conversation chat) was about "How to make a slingshot".
You should analyze it and find the exact creator or founder or inventor of the slingshot.
Let's assume you just found out that the slingshot was invented by "Charles Goodyear".
Then return `question` in a JSON format. (e.g., {"question": "Who is Charles Goodyear?"}).
Your final output should be a JSON data with the knowledge base response.
Here's JSON format example:
"`\``json"
{
"question": "Who is Charles Goodyear?",
}
"`\``"
######NOTE######
Make sure to return only JSON data! Nothing else!
######SYSTEM SHUTDOWN######
"""
3.3 [r_types.py]
- Placeholder for custom types and schemas.
from typing import TypedDict
# [ChatMessage]:
# <response>
# {
# "role": "system",
# "content": "Hello, how can I help you today?"
# }
# </response>
class ChatMessage(TypedDict):
role: str
content: str
# [Search Videos]:
# <response>
# Videos:
# [{'link': 'https://www.youtube.com/watch?v=X9oWGuKypuY', 'thumbnail': 'https://dmwtgq8yidg0m.cloudfront.net/medium/d3G6HeC5BO93-video-thumb.jpeg', 'title': 'Easy Home Made Slingshot'}, {'link': 'https://www.youtube.com/watch?v=V2iZF8oAXHo&pp=ygUMI2d1bGVsaGFuZGxl', 'thumbnail': 'https://dmwtgq8yidg0m.cloudfront.net/medium/sb2Iw9Ug-Pne-video-thumb.jpeg', 'title': 'Making an Apple Wood Slingshot | Woodcraft'}]
# </response>
class SearchVideosResponse(TypedDict):
link: str
thumbnail: str
title: str
# [Search Images]:
# <response>
# [{'source': '', 'original': 'https://i.ytimg.com/vi/iYlJirFtYaA/sddefault.jpg', 'title': 'How to make a Slingshot using Pencils ...', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://i.ytimg.com/vi/HWSkVaptzRA/maxresdefault.jpg', 'title': 'How to make a Slingshot at Home - YouTube', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://content.instructables.com/FHB/VGF8/FHXUOJKJ/FHBVGF8FHXUOJKJ.jpg?auto=webp', 'title': 'Country Boy" Style Slingshot ...', 'source_name': 'Instructables'}, {'source': '', 'original': 'https://i.ytimg.com/vi/6wXqlJVw03U/maxresdefault.jpg', 'title': 'Make slingshot using popsicle stick ...', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://ds-tc.prod.pbskids.org/designsquad/diy/DESIGN-SQUAD-42.jpg', 'title': 'Build | Indoor Slingshot . DESIGN SQUAD ...', 'source_name': 'PBS KIDS'}, {'source': '', 'original': 'https://i.ytimg.com/vi/wCxFkPLuNyA/maxresdefault.jpg', 'title': 'Paper Ninja Weapons ...', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://i0.wp.com/makezine.com/wp-content/uploads/2015/01/slingshot1.jpg?fit=800%2C600&ssl=1', 'title': 'Rotating Bearings ...', 'source_name': 'Make Magazine'}, {'source': '', 'original': 'https://makeandtakes.com/wp-content/uploads/IMG_1144-1.jpg', 'title': 'Make a DIY Stick Slingshot Kids Craft', 'source_name': 'Make and Takes'}, {'source': '', 'original': 'https://i.ytimg.com/vi/X9oWGuKypuY/maxresdefault.jpg', 'title': 'Easy Home Made Slingshot - YouTube', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://www.wikihow.com/images/thumb/4/41/Make-a-Sling-Shot-Step-7-Version-5.jpg/550px-nowatermark-Make-a-Sling-Shot-Step-7-Version-5.jpg', 'title': 'How to Make a Sling Shot: 15 Steps ...', 'source_name': 'wikiHow'}]
# </response>
class SearchImagesResponse(TypedDict):
source: str
original: str
title: str
source: str
source_name: str
# [Links]:
# <response>
# ['https://www.reddit.com/r/slingshots/comments/1d50p3e/how_to_build_a_sling_at_home_thats_not_shit/', 'https://www.instructables.com/Make-a-Giant-Slingshot/', 'https://www.mudandbloom.com/blog/stick-slingshot', 'https://pbskids.org/designsquad/build/indoor-slingshot/', 'https://www.instructables.com/How-to-Make-a-Slingshot-2/']
# </response>
class SearchLinksResponse(TypedDict):
title: str
link: str
### Local Map Response:
# <response>
# {
# "link": "https://www.google.com/maps/place/San+Francisco,+CA/data=!4m2!3m1!1s0x80859a6d00690021:0x4a501367f076adff?sa=X&ved=2ahUKEwjqg7eNz9KLAxVCFFkFHWSPEeIQ8gF6BAgqEAA&hl=en",
# "image": "https://dmwtgq8yidg0m.cloudfront.net/images/TdNFUpcEvvHL-local-map.webp"
# }
# </response>
class LocalMapResponse(TypedDict):
link: str
imgae: str
### Model Response:
# <response>
# {
# 'title': 'Nikola Tesla',
# 'type': 'Engineer and futurist',
# 'description': None,
# 'born': 'July 10, 1856, Smiljan, Croatia',
# 'died': 'January 7, 1943 (age 86 years), The New Yorker A Wyndham Hotel, New York, NY'
# }
# </response>
class KnowledgeBaseResponse(TypedDict):
title: str
type: str
description: str
born: str
died: str
Step 4: Running the Application
4.1 Run **``:**
`bash
python3 app.py
`
4.2 Access the Application:
- Open your browser and visit the provided Gradio URL (
http://127.0.0.1:7860
).
Step 5: Application Features
Basic Interaction:
- Type queries directly into the chat interface.
- Receive AI-generated answers and relevant follow-up suggestions.
Advanced Features:
- Image, video, and link searches from the follow-up context.
- Knowledge base retrieval.
- Local map searches.
Step 5: Customizing Your App
- Modify prompts in
[prompts.py]
to personalize AI behavior. - Expand functionality by adding more helpers or API endpoints in
[bagoodex_client.py]
. - Adjust UI and functionalities in
[app.py]
.
Step 5: Deploying Your App
- Consider deploying on
Hugging Face Spaces
.
Conclusion
In this tutorial, you built "Bagoodex Web Search," a versatile AI-powered search tool. You learned to interact with external APIs, handle follow-up interactions, and create a user-friendly interface with Gradio. You can now expand this project with more features and deploy it to share with others.
Top comments (0)