DEV Community

Building a Real-Time Data Pipeline App with Change Data Capture Tools: Debezium, Kafka, and NiFi

Change Data Capture (CDC) has become a critical technique for modern data integration, allowing organizations to track and propagate data changes across different systems in real-time. In this article, we'll explore how to build a comprehensive CDC solution using powerful open-source tools like Debezium, Apache Kafka, and Apache NiFi

Key Technologies in Our CDC Stack

  1. Debezium: An open-source platform for change data capture that supports multiple database sources.
  2. Apache Kafka: A distributed streaming platform that serves as the central nervous system for our data pipeline.
  3. Apache NiFi: A data flow management tool that helps us route, transform, and process data streams.

Architecture Overview
Our proposed architecture follows these key steps:

  • Capture database changes using Debezium
  • Stream changes through Kafka
  • Process and route data using NiFi
  • Store or further process the transformed data

Sample Implementation Approach

from confluent_kafka import Consumer, Producer
import json
import debezium

class CDCDataPipeline:
    def __init__(self, source_db, kafka_bootstrap_servers):
        """
        Initialize CDC pipeline with database source and Kafka configuration

        :param source_db: Source database connection details
        :param kafka_bootstrap_servers: Kafka broker addresses
        """
        self.source_db = source_db
        self.kafka_servers = kafka_bootstrap_servers

        # Debezium connector configuration
        self.debezium_config = {
            'connector.class': 'io.debezium.connector.mysql.MySqlConnector',
            'tasks.max': '1',
            'database.hostname': source_db['host'],
            'database.port': source_db['port'],
            'database.user': source_db['username'],
            'database.password': source_db['password'],
            'database.server.name': 'my-source-database',
            'database.include.list': source_db['database']
        }

    def start_capture(self):
        """
        Start change data capture process
        """
        # Configure Kafka producer for streaming changes
        producer = Producer({
            'bootstrap.servers': self.kafka_servers,
            'client.id': 'cdc-change-producer'
        })

        # Set up Debezium connector
        def handle_record(record):
            """
            Process each captured change record
            """
            # Transform record and publish to Kafka
            change_event = {
                'source': record.source(),
                'operation': record.operation(),
                'data': record.after()
            }

            producer.produce(
                topic='database-changes', 
                value=json.dumps(change_event)
            )

        # Start Debezium connector
        debezium.start_connector(
            config=self.debezium_config,
            record_handler=handle_record
        )

# Example usage
source_database = {
    'host': 'localhost',
    'port': 3306,
    'username': 'cdc_user',
    'password': 'secure_password',
    'database': 'customer_db'
}

pipeline = CDCDataPipeline(
    source_database, 
    kafka_bootstrap_servers='localhost:9092'
)
pipeline.start_capture()
Enter fullscreen mode Exit fullscreen mode

Detailed Implementation Steps

  1. Database Source Configuration The first step involves configuring Debezium to connect to your source database. This requires:
  • Proper database user permissions
  • Network connectivity
  • Enabling binary logging (for MySQL)
  1. Kafka as a Streaming Platform Apache Kafka acts as a central message broker, capturing and storing change events. Key considerations include:
  • Configuring topic partitions
  • Setting up appropriate retention policies
  • Implementing exactly-once processing semantics
  1. Data Transformation with NiFi Apache NiFi provides powerful data routing and transformation capabilities:
  • Filter and route change events
  • Apply data enrichment
  • Handle complex transformation logic

Challenges and Best Practices

  1. Handling Schema Changes: Implement robust schema evolution strategies
  2. Performance Optimization: Use appropriate partitioning and compression
  3. Error Handling: Implement comprehensive error tracking and retry mechanisms

GitHub Repository

I've created a sample implementation that you can explore and use as a reference. The complete code and additional documentation can be found at:
GitHub Repository: https://github.com/Angelica-R/cdc-data-pipeline

Conclusion
Building a Change Data Capture solution requires careful architectural design and selection of appropriate tools. By leveraging Debezium, Kafka, and NiFi, you can create a robust, scalable data integration platform that provides real-time insights into your data changes.

Top comments (0)