๐ Must-Know Algorithm Techniques for Efficient Problem Solving
Mastering algorithmic techniques can significantly improve your coding efficiency. Below are some key strategies along with examples and LeetCode problems to help you practice. ๐ก
๐น 1. Two Pointer Technique ๐โโ๏ธ๐โโ๏ธ
Concept: Use two pointers to efficiently search through a sorted list.
Common Use Cases:
- Searching in sorted arrays
- Finding pairs that meet a condition
Example: Find two numbers in a sorted array that sum to a target value.
function twoSumSorted(arr, target) {
let left = 0, right = arr.length - 1;
while (left < right) {
let sum = arr[left] + arr[right];
if (sum === target) return [arr[left], arr[right]];
sum < target ? left++ : right--;
}
return [];
}
Practice: Two Sum II
๐น 2. Prefix Sum โ
Concept: Compute cumulative sums to quickly answer range sum queries.
Common Use Cases:
- Fast range sum calculations
- Detecting patterns in sequences
Example: Compute prefix sums for an array.
function prefixSum(arr) {
let prefix = [0];
for (let i = 0; i < arr.length; i++) {
prefix[i + 1] = prefix[i] + arr[i];
}
return prefix;
}
Practice: Range Sum Query
๐น 3. Top K Elements ๐
Concept: Use sorting or heaps to find the most important elements in a list.
Example: Find the largest k elements.
function topKElements(arr, k) {
return arr.sort((a, b) => b - a).slice(0, k);
}
Practice: Top K Frequent Elements
๐น 4. Sliding Window ๐
Concept: Use a moving window to optimize range-based computations.
Example: Find the maximum sum of any k consecutive elements.
function maxSumSubarray(arr, k) {
let sum = 0, maxSum = -Infinity;
for (let i = 0; i < k; i++) sum += arr[i];
for (let i = k; i < arr.length; i++) {
sum += arr[i] - arr[i - k];
maxSum = Math.max(maxSum, sum);
}
return maxSum;
}
Practice: Maximum Subarray
๐น 5. Breadth-First Search ๐ณ
Concept: Explore a graph layer by layer.
Example: Traverse a graph using BFS.
function bfs(graph, start) {
let queue = [start], visited = new Set(queue);
while (queue.length) {
let node = queue.shift();
console.log(node);
for (let neighbor of graph[node]) {
if (!visited.has(neighbor)) {
visited.add(neighbor);
queue.push(neighbor);
}
}
}
}
Practice: Binary Tree Level Order Traversal
๐น 6. Depth-First Search ๐ต๏ธ
Concept: Explore one path deeply before backtracking.
Example: Perform DFS on a graph.
function dfs(graph, node, visited = new Set()) {
if (visited.has(node)) return;
visited.add(node);
console.log(node);
for (let neighbor of graph[node]) {
dfs(graph, neighbor, visited);
}
}
Practice: Number of Islands
๐น 7. Topological Sort ๐
Concept: Order tasks when dependencies exist.
Example: Perform topological sorting.
function topologicalSort(graph) {
let inDegree = {}, queue = [], result = [];
Object.keys(graph).forEach(node => inDegree[node] = 0);
Object.values(graph).flat().forEach(node => inDegree[node]++);
Object.keys(graph).forEach(node => inDegree[node] === 0 && queue.push(node));
while (queue.length) {
let node = queue.shift();
result.push(node);
graph[node].forEach(neighbor => {
if (--inDegree[neighbor] === 0) queue.push(neighbor);
});
}
return result;
}
Practice: Course Schedule II
๐น 8. Divide and Conquer โ๏ธ
Concept: Break a problem into smaller parts and solve them independently.
Example: Implement merge sort.
function mergeSort(arr) {
if (arr.length < 2) return arr;
let mid = Math.floor(arr.length / 2);
let left = mergeSort(arr.slice(0, mid));
let right = mergeSort(arr.slice(mid));
return merge(left, right);
}
function merge(left, right) {
let result = [];
while (left.length && right.length) {
result.push(left[0] < right[0] ? left.shift() : right.shift());
}
return [...result, ...left, ...right];
}
Practice: Sort an Array
๐ Keep Practicing!
These techniques will significantly improve your problem-solving skills. Keep practicing and refining your approach! ๐ช๐
๐ฌ Have questions? Drop them in the comments! ๐
Top comments (0)
Some comments may only be visible to logged-in visitors. Sign in to view all comments.