Finally, it was shown that silencing circ-USP1 reduced DNMT3A expression in the kidney of mice that received renal allografts. Circ-USP1 functions as a competing endogenous RNA for miR-194-5p. This occurs in order to regulate DNMT3A expression in kidney injury induced by hypoxia in acute renal allografts.The subcallosal cingulate (SCC) area is a putative hub in the brain network underlying depression. Deep brain stimulation (DBS) targeting a particular subregion of SCC, identified as the intersection of forceps minor (FM), uncinate fasciculus (UCF), cingulum and fronto-striatal fiber bundles, may be critical to a therapeutic response in patients with severe, treatment-resistant forms of major depressive disorder (MDD). The pattern and variability of the white matter anatomy and organization within SCC has not been extensively characterized across individuals. The goal of this study is to investigate the variability of white matter bundles within the SCC that structurally connect this region with critical nodes in the depression network. Structural and diffusion data from 100 healthy subjects from the Human Connectome Project database were analyzed. Anatomically defined SCC regions were used as seeds to perform probabilistic tractography and to estimate the connectivity from the SCC to subject-specific target areas believed to be involved in the pathology of MDD including ventral striatum (VS), UCF, anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC). Four distinct areas of connectivity were identified within SCC across subjects (a) postero-lateral SCC connectivity to medial temporal regions via UCF, (b) postero-medial connectivity to VS, (c) superior-medial connectivity to ACC via cingulum bundle, and (d) antero-lateral connectivity to mPFC regions via forceps minor. Assuming white matter connectivity is critical to therapeutic response, the improved anatomic understanding of SCC as well as an appreciation of the intersubject variability are critical to developing optimized therapeutic targeting for SCC DBS.Fungi infect over a billion people worldwide and contribute substantially to human morbidity and mortality despite all available therapies. New antifungal drugs are urgently needed. Decades of study have revealed numerous protein targets of potential therapeutic interest for which potent, fungal-selective ligands remain to be discovered and developed. To measure the binding of diverse small molecule ligands to their larger protein targets, fluorescence polarization (FP) can provide a robust, inexpensive approach. The protocols in this article provide detailed guidance for developing FP-based assays capable of measuring binding affinity in whole cell lysates without the need for purification of the target protein. check details Applications include screening of libraries to identify novel ligands and the definition of structure-activity relationships to aid development of compounds with improved target affinity and fungal selectivity. © 2021 Wiley Periodicals LLC. Basic Protocol 1 Use of saturation binding curves to optimize tracer and lysate protein concentrations Basic Protocol 2 Establishment of competition binding experiments Support Protocol 1 Preparation of fungal cell lysates Support Protocol 2 Preparation of human HepG2 cell lysate.Protein labeling strategies have been explored for decades to study protein structure, function, and regulation. Fluorescent labeling of a protein enables the study of protein-protein interactions through biophysical methods such as microscale thermophoresis (MST). MST measures the directed motion of a fluorescently labeled protein in response to microscopic temperature gradients, and the protein's thermal mobility can be used to determine binding affinity. However, the stoichiometry and site specificity of fluorescent labeling are hard to control, and heterogeneous labeling can generate inaccuracies in binding measurements. Here, we describe an easy-to-apply protocol for high-stoichiometric, site-specific labeling of a protein at its N-terminus with N-hydroxysuccinimide (NHS) esters as a means to measure protein-protein interaction affinity by MST. This protocol includes guidelines for NHS ester labeling, fluorescent-labeled protein purification, and MST measurement using a labeled protein. As an example of the entire workflow, we additionally provide a protocol for labeling a ubiquitin E3 enzyme and testing ubiquitin E2-E3 enzyme binding affinity. These methods are highly adaptable and can be extended for protein interaction studies in various biological and biochemical circumstances. © 2021 Wiley Periodicals LLC. Basic Protocol 1 Labeling a protein of interest at its N-terminus with NHS esters through stepwise reaction Alternate Protocol Labeling a protein of interest at its N-terminus with NHS esters through a one-pot reaction Basic Protocol 2 Purifying the N-terminal fluorescent-labeled protein and determining its concentration and labeling efficiency Basic Protocol 3 Using MST to determine the binding affinity of an N-terminal fluorescent-labeled protein to a binding partner. Basic Protocol 4 NHS ester labeling of ubiquitin E3 ligase WWP2 and measurement of the binding affinity between WWP2 and an E2 conjugating enzyme by the MST binding assay.Hepatocellular carcinoma (HCC) is one of the most common cancers with high prevalence and mortality, and it has brought huge economic and health burden for the world. It is urgent to found novel targets for HCC diagnosis and clinical intervention. Circular RNA (circRNA) has been reported to participate in many cancer progressions including HCC, suggesting that circRNA might paly essential role in HCC initiation and progression. Our study aims to found that potential circRNA participates in HCC development and its underlying molecular mechanisms. We obtained three pairs of HCC tissues and its adjacent normal tissues data from GEO DataSets. MTT, cell colony, EdU, wound-healing, transwell invasion and mouse xenograft model assays were used to demonstrate the biological functions of circCAMSAP1 in HCC progression. Furthermore, we conducted bioinformatics analysis, AGO2-RIP, RNA pull-down and luciferase reporter assays to assess the association of circCAMSAP1-miR-1294-GRAMD1A axis in HCC cells. The expression of circCAMSAP1 was up-regulated in HCC tissues compared with its adjacent normal tissues.check details
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)