r individuals with amputation who experienced similar injuries and rehabilitation services.Maintaining physical mobility is important for preventing age-related comorbidities in older adults. Endurance and resistance training prevent mobility loss in aging, but exercise alone does not always achieve the expected improvements in physical and cardiopulmonary function. Recent preclinical evidence suggests that a reason for the variability in exercise training responses may be the age-related dysregulation of the nicotinamide adenine dinucleotide (NAD+) metabolome. NAD+ is an essential enzymatic cofactor in energetic and signaling pathways. Endogenous NAD+ pool is lower in several chronic and degenerative diseases (e.g., cardiovascular diseases, Alzheimer's and Parkinson's diseases, muscular dystrophies), and also in aging. Exercise requires a higher energy expenditure than a resting state, thus a state of NAD+ insufficiency with reduced energy metabolism, could result in an inadequate exercise response. GSK2879552 Recently, the NAD+ precursor nicotinamide riboside (NR), a vitamin B3 derivate, showed an ability to improve NAD+ metabolome homeostasis, restoring energy metabolism and cellular function in various organs in animals. NR has also been tested in older humans and is considered safe, but the effects of NR supplementation alone on physical performance are unclear. The purpose of this review is to examine the preclinical and clinical evidence on the effect of NR supplementation strategies alone and in combination with physical activity on mobility and skeletal muscle and cardiovascular function.Ageing is an unavoidable, universal, biological phenomenon affecting all organisms, which involves variable declines of individuals motor and memory capabilities. This study aimed to investigate the potential ameliorating effects of curcumin C3 complex, Astragalus membranaceus and blueberry on certain age-related biochemical alterations in rat liver. Four groups of rats, aged 12 months-old, were used. The first group; aged control group in which rats were left without any treatment until the age of 17 months. The other three groups received daily by oral gavage for 5 months the following supplements; curcumin C3 complex (110 mg/kg), Astragalus membranaceus (100 mg/kg) and blueberry (100 mg/kg) respectively. Additionally, a fifth group of rats, aged 5 months-old, was used as an adult control group. Our supplements alleviated ageing-induced redox state imbalance and inflammation as evidenced by reduction of hepatic thiobarbituric acid reactive substances and 8-hydroxydeoxyguanosine levels, restoration of total antioxidant capacity and nitric oxide contents, and lessening of lipofuscin deposition. All supplements decreased hepatic interlukin-6 gene expression and serum levels. Notably, Astragalus membranaceus and blueberry upregulated hepatic telomerase reverse transcriptase gene expression and increased telomere length. Our findings recommend the use of these natural hepatoprotective supplements for the elderly to promote healthy ageing and minimize the risk of age-related liver diseases.Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.NTCP (SLC10A1) has been well recognized as a basolateral (sinusoidal) Na+-bile acid co-transporter that mediates the hepatic uptake of bile acids. However, little is known about the effects of NTCP (SLC10A1) on hepatoblastoma (HB) and its underlying metabolic mechanisms. In this study, we found that NTCP (SLC10A1) expression was downregulated in HB cells and tissues, and it was demonstrated that NTCP (SLC10A1) reduced cell viability, promoted cell cycle arrest and induced apoptosis of HB cells. The metabolic profiles of HB cells with NTCP (SLC10A1) overexpression were further examined to determine their biochemical alterations and deepen our understanding on the metabolic regulation of NTCP (SLC10A1) overexpression. The metabolomics study based on ultra performance liquid chromatography-mass spectrometry revealed alterations in the metabolites of HB cells following NTCP (SLC10A1) overexpression. Next, we stably overexpressed NTCP (SLC10A1) in HepG2 cells, and found that NTCP (SLC10A1)-overexpressing cells could inhibit the production of adenosine and decreased both mRNA and protein levels of HIF1α. Further overexpression of HIF1α in the NTCP (SLC10A1)-overexpression group restored the production of adenosine. Collectively, these findings provide strong evidence that NTCP (SLC10A1) overexpression significantly disrupts the metabolism of adenosine in HB cells and highlight that NTCP (SLC10A1) mediates adenosine production mainly through HIF1α.Hepatitis B virus (HBV) infection remains a major public health concern worldwide with about 257 million individuals chronically infected. Current therapies can effectively control HBV replication and slow down disease progress, but cannot cure HBV infection. Upon infection, HBV establishes a pool of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. The cccDNA exists as a minichromosome and resists to antivirals, thus a therapeutic eradication of cccDNA from the infected cells remains unattainable. In this review, we summarize the state of knowledge on the mechanisms underlying cccDNA formation and regulation, and discuss the possible strategies that may contribute to the eradication of HBV through targeting cccDNA.GSK2879552
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)