Binary Tree:
A binary tree is a data structure consisting of a set of linked nodes that represent a hierarchical tree structure. Each node is linked to others via parent child relationship.
Any given node can have at most two children(left&right).
Internal structure of binary tree:
class Node {
constructor(data, left = null, right = null) {
this.data = data;
this.left = left;
this.right = right;
}
}
class BST {
constructor() {
this.root = null;
}
add(data) {
const node = this.root;
if (node == null) {
this.root = new Node(data);
} else {
const searchTree = function(data) {
if (data < node.data) {
if (node.left == null) {
node.left = new Node(data);
return;
} else if (node.left != null) {
return searchTree(node.left)
}
} else if (data > node.data) {
if (node.right == null) {
node.right = new Node(data)
return;
} else if (node.right != null) {
return searchTree(node.right)
}
} else {
return null;
}
}
return searchTree(data)
}
}
findMax() {
let current = this.root;
while (current.right != null) {
current = current.right;
}
return current.data;
}
findMin() {
let current = this.root;
while (current.left != null) {
current = current.left
}
return current.data;
}
find(data) {
let current = this.root;
while (current.data != null) {
if (data < current.data) {
current = current.left;
} else {
current = current.right;
}
if (current == null) {
return null;
}
}
return current;
}
isPresent(data) {
let current = this.root;
while (current) {
if (data == current.data) {
return true
}
if (data < current.data) {
current = current.left;
} else {
current = current.right;
}
}
return false;
}
}
const bst = new BST();
bst.add(1);
bst.add(2);
bst.add(3);
console.log(bst.findMin());
console.log(bst.findMax());
console.log(bst.find(1));
console.log(bst.isPresent(1));
Any comments or suggestions are welcome.
Top comments (0)