Crack-free binary SiOxTiOy composite films with the refractive index of ~1.94 at wavelength 632.8 nm were fabricated on soda-lime glass substrates, using the sol-gel method and dip-coating technique. With the use of transmission spectrophotometry and Tauc method, the energy of the optical band gap of 3.6 eV and 4.0 eV were determined for indirect and direct optical allowed transitions, respectively. Using the reflectance spectrophotometry method, optical homogeneity of SiOxTiOy composite films was confirmed. The complex refractive index determined by spectroscopic ellipsometry confirmed good transmission properties of the developed SiOxTiOy films in the Vis-NIR spectral range. The surface morphology of the SiOxTiOy films by atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods demonstrated their high smoothness, with the root mean square roughness at the level of ~0.15 nm. Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy were used to investigate the chemical properties of the SiOxTiOy material. The developed binary composite films SiOxTiOy demonstrate good waveguide properties, for which optical losses of 1.1 dB/cm and 2.7 dB/cm were determined, for fundamental TM0 and TE0 modes, respectively.This study investigated the austenite stability and deformation behavior of cyclic quenching-austenite reverse transformation processed Fe-0.25C-3.98Mn-1.22Al-0.20Si-0.19Mo-0.03Nb medium Mn steel. A number of findings were obtained. Most importantly, the extent of the TRIP effect was mainly determined by an appropriately retained austenite stability rather than its content. Simultaneously, chemical elements were the key factors affecting austenite stability, of which Mn had the greatest impact, while the difference of retained austenite grain size and Mn content resulted in different degrees of retained austenite stability. Additionally, there were still large amounts of strip and granular-retained austenite shown in the microstructure of the CQ3-ART sample after tensile fracture, revealing that the excessively stable, retained austenite inhibited the generation of an extensive TRIP effect.Rehabilitation, strengthening, and retrofitting of existing masonry buildings represent an important challenge for the construction engineering field. Often, slab strengthening/retrofitting is performed by replacing existing timber and steel beams or by adding new beams to improve the slab load-carrying capacity. The computation of the stresses at the beam-masonry interface (i.e., the contact pressure) is crucial to properly design the beam support length, preventing local failure of masonry and beam. This paper presents a simple analytical procedure to compute the contact pressure at the beam-masonry interface. The analytical procedure is validated by comparison between analytical and corresponding numerical results obtained by finite element modeling. Different types of beam (solid and laminated timber beams and steel beams) were considered, as well as different support conditions (simply resting on the wall considering different support lengths or fully embedded). The results obtained show that the method proposed is simple and reliable, which makes it suitable for professional practice.Lead-212 is recognized as a promising radionuclide for targeted alpha therapy for tumors. Many studies of 212Pb-labeling of various biomolecules through bifunctional chelators have been conducted. Another approach to exploiting the cytotoxic effect is coupling the radionuclide to a microparticle acting as a carrier vehicle, which could be used for treating disseminated cancers in body cavities. Calcium carbonate may represent a suitable material, as it is biocompatible, biodegradable, and easy to synthesize. In this work, we explored 212Pb-labeling of various CaCO3 microparticles and developed a protocol that can be straightforwardly implemented by clinicians. Vaterite microparticles stabilized by pamidronate were effective as 212Pb carriers; labeling yields of ≥98% were achieved, and 212Pb was strongly retained by the particles in an in vitro stability assessment. Moreover, the amounts of 212Pb reaching the kidneys, liver, spleen, and skeleton of mice following intraperitoneal (i.p.) administration were very low compared to i.p. injection of unbound 212Pb2+, indicating that CaCO3-bound 212Pb exhibited stability when administered intraperitoneally. Therapeutic efficacy was observed in a model of i.p. ovarian cancer for all the tested doses, ranging from 63 to 430 kBq per mouse. Lead-212-labeled CaCO3 microparticles represent a promising candidate for treating intracavitary cancers.This paper reports a fundamental investigation consisting of systematic trials into the response of Ti6Al4V alloy to high-speed machining using carbide inserts. It is a useful extension to work previously published, and aims at assessing the impact of the process parameters, depth of cut, cutting speed and feed rate in addition to cutting length, and their interrelations, on observed crater and flank wear and roughness of the machined surface. The results showed that abrasion was the most important flank wear mechanism at high speed. It also showed that increased cutting length accelerated crater wear more than exhibited flank wear and had considerable effect on surface roughness. In particular, crater wear increased by over 150% (on average), and flank wear increased by 40% (on average) when increasing cutting length from 40 to 120 mm. However, cutting the same length increased surface roughness by 50%, which helps explain how progression of tool wear leads to deteriorated surface quality. ANOVA was used to perform statistical analyses of the measured data and revealed that cutting length and depth of cut had the greatest effect on both crater and flank wear of the cutting tool. These results confirm that high-speed machining of Ti6Al4V alloy is a reliable process, with cutting speed identified as having a relatively small influence on the tool wear and resultant roughness of the machined surface relative to other parameters.The article presents the results of model tests with which a comparative analysis of two methods of ball separation during the skew rolling process was carried out. A verification of the results obtained in the physical modelling process with the results obtained in the real process of skew ball rolling was also carried out. During the physical modelling, the effect of changing the ball separation method on the quality of the products obtained, variations in maximum torque values and maximum radial forces were analyzed. In the case of real tests, the results were verified with the results of physical modelling, in which the surface quality and torque values for one of the tool sets were compared. Physical modelling was used to verify the differences between the two methods of ball separation. Commercial plasticine based on synthetic wax from the manufacturer PRIMO was used as a model material for physical analysis. The plasticine used for testing was cooled to 0 °C and the cooling process took 24 h. The tools used for the physical modelling were 3D printed and the material used was ABS. The method of physical modelling using plasticine as a model material allows for a correct analysis of hot metal forming processes.The α-phase waveguides directly produced in one fabrication step only are well known for preserving both the excellent nonlinear properties and the ferroelectric domains orientation of lithium niobate substrates. However, by using the piezoresponse force microscopy (PFM), we present a coherent study on ferroelectric dipoles switching induced by the fabrication process of α-phase waveguides on Z-cut congruent lithium niobate (CLN) substrates. The obtained results show that the proton exchange process induces a spontaneous polarization reversal and a reduction in the piezoelectric coefficient d33. The quantitative assessments of the impact of proton exchange on the piezoelectric coefficient d33 have been quantified for different fabrication parameters. By coupling systematic PFM investigation and optical characterizations of α-phase protonated regions and virgin CLN on ±Z surfaces of the samples, we find a very good agreement between index contrast (optical investigation) and d33 reduction (PFM investigations). We clearly show that the increase in the in-diffused proton concentration (increase in index contrast) in protonated zones decreases the piezoelectric coefficient d33 values. https://www.selleckchem.com/products/bi-4020.html Furthermore, having a high interest in nonlinear performances of photonics devices based on PPLN substrates, we have also investigated how deep the spontaneous polarization reversal induced by proton exchange takes place inside the α-phase channel waveguides.This study aimed to numerically and experimentally analyze the effects of internal mounting forces and selected materials on the stiffness and bending moment capacity of L-type corner joints connected with novelty-designed 3D printed fasteners. The experiments were carried out using medium-density fiberboard, high-density fiberboard, beech plywood, particleboard, and beech (Fagus silvatica L.) wood. The results showed that the joints made of beech wood were characterized by the largest bending moment capacity (12.34 Nm), while the worst properties were shown by particleboard (2.18 Nm). The highest stiffness was demonstrated by plywood joints (6.56 kNm/rad), and the lowest by particleboard (0.42 kNm/rad). Experimental studies have reasonably verified the results of numerical calculations. The test results confirmed that the geometry of new fasteners promotes the mounting forces under the assembly of the joints. It was shown that the higher the density of the materials, the greater the value of the mounting forces (164 N-189 N).High-strength non-oriented electro-technical steels with a low thickness possess excellent isotropy of electromagnetic and mechanical properties which is highly required in the production of high-efficiency electric motors. The manufacturing process of this type of steel includes very important and technologically complex routes such as hot rolling, cold rolling, temper rolling, or final heat treatment. The final thickness is responsible for the decrease in eddy-current losses and is effectively achieved during cold rolling by the tandem rolling mill. Industrial production of thin sheets of high-strength silicon steels in high-speed tandem rolling mills is a rather demanding technological operation due to the increased material brittleness that is mainly caused by the intensive solid solution and deformation strengthening processes, making the dislocation motion more complex. The main objective of this work was to investigate the distribution of local mechanical strains through the thickness of high silicon steel hot bands, generated during the cold rolling. The experimental samples were analysed by means of electron back-scattered diffraction and scanning electron microscopy. From the performed analyses, the correlation between the material workability and the nucleation of cracks causing the observed steel strip failure during the tandem cold rolling was characterized. Specifically, the microstructural, textural, misorientation, and fractographic analyses clearly show that the investigated hot band was characterized by a bimodal distribution of ferrite grains and the formation of intergranular cracks took place only between the grains with recrystallized and deformed structures.https://www.selleckchem.com/products/bi-4020.html
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)