DEV Community

Kyed Borup
Kyed Borup

Posted on

Local Vertebral Osteomyelitis inside People together with Staphylococcus aureus Bacteremia.

The as-prepared polyamine-co-melamine crosslinked CS derivatives were found potential adsorbents for the adsorptive capture of Hg2+ ions from aqueous solutions and polluted waters.Delayed healing or non-healing of wounds caused by bacterial infection is still a difficult medical problem. Nowadays, the topical application of antibiotics is a common treatment for infections. However, subinhibitory concentrations or high dose of antibiotics leads to the antibacterial effect counterproductive. So it's necessary to put forward an on-demand drug delivery to solve this tough issue. In this paper, a pH-responsive hydrogel was prepared by oxidized dextran (Dex-CHO), sulfadiazine (SD) and tobramycin (TOB). The hydrogel was designed by the environment in the early immature stage of biofilm (pH 5.0). Schiff bases can release drugs in slightly acidic environment. The hydrogel showed injectable, pH-sensitive drug release, and great biocompatibility. Released SD and TOB exhibited a synergistic effect therefore the hydrogel showed high antibacterial activity. This study provides an easy and promising strategy to develop smart hydrogels that aim at topical administration of antibiotics and come up with a new treatment of local bacterial infections.Spherical nanocelluloses, also known as cellulose nanospheres (CNS), have controllable morphology and have shown advantages as green template material, emulsion stabilizer. Herein, CNS were prepared via a new two-step method, first pretreatment of microcrystalline cellulose (MCC) using ZnCl2·3H2O and then acid hydrolysis of regenerated cellulose (RC) via p-toluenesulfonic acid (p-TsOH). The shape, size, crystallinity of MCC were changed, and nubbly RC with smallest size (942 nm) was obtained after 2 h pretreatment by ZnCl2·3H2O. CNS with high 61.3% yield were produced after acid hydrolysis (67 wt% p-TsOH) of RC at 80 °C, 6 h. The analysis of Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) showed that CNS had an average diameter of 347 nm. CNS were present in precipitate after high-speed centrifugation, due to the high Zeta potential of -12 mV and large size. The structure of CNS was tested by Fourier Transfer Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Nuclear Magnetic Resonance (NMR), CNS had high crystallinity (cellulose II) of 61%. Thermal Gravimetric Analysis (TGA) indicated that CNS had high thermal stability (Tonset 303.3 °C, Tmax 332 °C). CNS showed poor re-dispersibility in water/ethanol/THF, 1 wt% CNS could be dissolved in ZnCl2·3H2O. 7.37% rod-like CNC were obtained after 6 h hydrolysis. FTIR proved that p-TsOH was recovered by re-crystallization. This study provided a novel, sustainable two-step method for the preparation of spherical CNS.In the present study, Grass pea protein isolate (GPPI)- Alyssum homolocarpum seed gum (AHSG) complex nanoparticles were formed through two fabrication methods and their physicochemical properties, structure and stability against sodium chloride and different pHs were investigated. Type 1 particles were formed by creating GPPI nanoparticles, and then coating them with AHSG; while Type 2 particles were fabricated through the heat treatment of GPPI-AHSG complexes at 85 °C for 15 min. The preparation methods did not influence the magnitude of electrical charges on biopolymer particles. The particle size analysis revealed that Type 2 particles had lower mean diameter (d = 360.20 nm) compared to Type 1 particles (d = 463.22 nm). Structural properties of Type 1 and Type 2 particles were determined using Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), Differential scanning calorimetry (DSC), Atomic force microscopy (AFM), and transmission electron microscopy (TEM). APX-115 NADPH-oxidase inhibitor Hydrogen bonding, electrostatic and hydrophobic interactions were the main driving forces contributed to the formation of both GPPI-AHSG complex particles. Assessments of morphological and structural properties also indicated that both Type 1 and 2 particles had spherical shapes and heat treatment increased the ordered intermolecular structures in biopolymer particles. Type 2 particles had higher denaturation temperature and better pH and salt stability when compared to Type 1 particles. These results indicate that thermal treatment was effective for the fabrication of stable GPPI-AHSG complex nanoparticles.In recent years, the utilization of CS-MWCNT as targeted drug carriers has attracted considerable attention. Hericium erinaceus polysaccharide (HEP) has been reported as an immunostimulant to improve immune responses. This study was focussed on developing CS-MWCNT encapsulating HEP (CS-MWCNT-HEP). Using in mice peritoneal macrophages, we found the immune response could be effectively regulated by CS-MWCNT-HEP, promoted the expression of the MHCII, CD86, F4/80 and gp38. Moreover, the mice immunized with CS-MWCNT-HEP nanoparticles significantly extended PCV2-specific IgG immune response and the levels of cytokines. The results demonstrated that CS-MWCNT-HEP may be a promising drug delivery system for immuno-enhancement.Sodium bicarbonate medium ultrasound pre-treatment can enhance the freeze-drying process of blueberries, but the quality of dried products cannot meet the actual production needs. To yield higher quality products, chitosan coating was applied in blueberry sodium bicarbonate medium ultrasound pre-treatment enhanced freeze-drying process. The improvement effect of different chitosan coating methodologies on the procedure of blueberry freeze-drying, enhanced by ultrasound pre-treatment in sodium bicarbonate medium, was investigated. These include chitosan solution soaking alone (CH-A), chitosan medium ultrasound treatment (US-CH), first sodium bicarbonate medium ultrasound treatment then chitosan solution soaking (US-NaHCO3 + CH) and first sodium bicarbonate soaking followed by chitosan medium ultrasound treatment (NaHCO3 + US-CH). While the treatments that presoaking in sodium bicarbonate solution (NaHCO3-A), water medium ultrasound treatment (US-W) and sodium bicarbonate medium ultrasound treatment (US-NaHCO3) were used as the control groups. Results demonstrated that ultrasound treatment and sodium bicarbonate soaking have positive effect on improving the freeze-drying characteristics of blueberries, while chitosan coating has a negative effect. Chitosan coating has a significant effect on strengthening limit effect of blueberry skin on juice overflow and weakening moisture absorption capacity of dried blueberry. US-NaHCO3 + CH pretreatment yielded the best results for blueberry freeze-drying.APX-115 NADPH-oxidase inhibitor

Top comments (0)