DEV Community

Coble Flindt
Coble Flindt

Posted on

Creating Local community By way of Love Groups for Group Students in Communication Sciences and also Disorders.

These limitations necessitate the development of in vitro 3D human intestinal tissue models that recapitulate in vivo-like microenvironment and provide more physiologically relevant cellular responses so that they can better predict the safety and efficacy of pharmaceuticals and toxicants. Over the past decade, much progress has been made in the development of in vitro intestinal models (organoids and 3D-organotypic tissues) using either inducible pluripotent or adult stem cells. Among the models, the MatTek's intestinal tissue model (EpiIntestinal™ Ashland, MA) has been used extensively by the pharmaceutical industry to study drug permeation, metabolism, drug-induced GI toxicity, pathogen infections, inflammation, wound healing, and as a predictive model for a clinical adverse outcome (diarrhea) to pharmaceutical drugs. In this paper, our review will focus on the potential of in vitro small intestinal tissues as preclinical research tool and as alternative to the use of animals.Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivo-like 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations of that approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers.
Solitary fibrous tumor (SFT), a mesenchymal fibroblastic tumor with a hypervascular nature, rarely develops in the pelvis. Resection of a giant SFT occupying the pelvic cavity poses an increased risk of developing massive hemorrhage during resection, although surgical resection is the most effective treatment method for this tumor to achieve a potential cure. SFT rarely develops with Doege-Potter syndrome, which is known as a paraneoplastic syndrome characterized by non-islet cell tumor hypoglycemia (NICTH) secondary to SFT that secretes insulin-like growth factor-II (IGF-II). We present a case of a giant pelvic SFT with Doege-Potter syndrome, which was successfully treated with transcatheter arterial embolization (TAE) followed by surgical resection.

A 46-year-old woman presented with a disorder of consciousness due to refractory hypoglycemia. Images of the pelvis showed a giant and heterogeneously hypervascular mass displacing and compressing the rectum. Endocrinological evaluation revealed low serum leoglycemia in Doege-Potter syndrome.
Preoperative angiography followed by TAE is an exceedingly helpful method to reduce intraoperative hemorrhage when planning to resect SFT occupying the pelvic cavity. Complications related to ischemia should be kept in mind after TAE, which needs to be planned within 1 or 2 days before surgery. TAE for tumors may be an option in addition to medical and surgical treatment for persistent hypoglycemia in Doege-Potter syndrome.The aim of the present study was to investigate the toxicity effects of cadmium-nickel (Cd-Ni) after single and mixtures exposures over the macrophyte Lemna gibba. Effects were assessed on growth, as frond number and fresh weight and biochemical parameters, such as total protein content and activity of antioxidant enzymes. Plants were exposed to single Cd and Ni in concentrations that ranged between 0.13-33 mg/L and 0.18 and 11.82 mg/L, respectively. find more For binary mixtures, individual metal IC50 values were used for selection of the evaluated concentrations. The experimental design consisted in three different ratios based on the concept of toxic units (TU), each ratio was evaluated by five different concentrations. Both single and mixture treatments were performed for 7 days following the conditions according to OECD (2006). Single and mixture exposures affected plant growth and the biomarkers of the antioxidant response. Growth parameters showed a differential sensitivity after individual metal exposures. Cd wC 1.11.1.7) was also affected in single and mixtures assays. APOX and GPOX showed a higher increase of its activities respect the controls after mixture treatments than for single metal treatments. Such optimization of the antioxidant system could be one of the causes of the antagonistic toxicity observed in mixture exposures. Concentration addition (CA) reference model, based on frond number, in Cd-Ni mixtures was not a good predictor to evaluate toxicity from dissolved metal concentration since the results showed that toxicity was less than additive, with an average of ΣTU = 2.17. The observed antagonisms resulted to be stronger in mixtures with higher metal concentrations.The protein cloud-point temperature (TCloud) is a known representative of protein-protein interaction strength and provides valuable information during the development and characterization of protein-based products, such as biopharmaceutics. A high-throughput low volume TCloud detection method was introduced in preceding work, where it was concluded that the extracted value is an apparent TCloud (TCloud,app). As an understanding of the apparent nature is imperative to facilitate inter-study data comparability, the current work was performed to systematically evaluate the influence of 3 image analysis strategies and 2 experimental parameters (sample volume and cooling rate) on TCloud,app detection of lysozyme. Different image analysis strategies showed that TCloud,app is detectable by means of total pixel intensity difference and the total number of white pixels, but the latter is also able to extract the ice nucleation temperature. Experimental parameter variation showed a TCloud,app depression for increasing cooling rates (0.find more

Top comments (0)