The equilibrium climate state is similar to the control climate from a coupled simulation with a prescribed Greenland ice sheet, indicating that the iterative procedure is consistent with a traditional spin-up approach without interactive ice sheets. These results suggest that the iterative method presented here provides a faster and computationally cheaper method for spinning up a highly complex ESM, with or without interactive ice sheet components. The method described here has been used to develop the climate/ice sheet initial conditions for transient, ice sheet-enabled simulations with CESM2-CISM2 in the Coupled Model Intercomparison Project Phase 6 (CMIP6).Gravity waves (GWs) generated by tropical convection are important for the simulation of large-scale atmospheric circulations, for example, the quasi-biennial oscillation (QBO), and small-scale phenomena like clear-air turbulence. However, the simulation of these waves still poses a challenge due to the inaccurate representation of convection, and the high computational costs of global, cloud-resolving models. Methods combining models with observations are needed to gain the necessary knowledge on GW generation, propagation, and dissipation so that we may encode this knowledge into fast parameterized physics for global weather and climate simulation or turbulence forecasting. We present a new method suitable for rapid simulation of realistic convective GWs. Here, we associate the profile of latent heating with two parameters precipitation rate and cloud top height. Full-physics cloud-resolving WRF simulations are used to develop a lookup table for converting instantaneous radar precipitation rates and echo top measurements into a high-resolution, time-dependent latent heating field. The heating field from these simulations is then used to force an idealized dry version of the WRF model. We validate the method by comparing simulated precipitation rates and cloud tops with scanning radar observations and by comparing the GW field in the idealized simulations to satellite measurements. Our results suggest that including variable cloud top height in the derivation of the latent heating profiles leads to better representation of the GWs compared to using only the precipitation rate. The improvement is especially noticeable with respect to wave amplitudes. This improved representation also affects the forcing of GWs on large-scale circulation.In the atmosphere, microphysics refers to the microscale processes that affect cloud and precipitation particles and is a key linkage among the various components of Earth's atmospheric water and energy cycles. The representation of microphysical processes in models continues to pose a major challenge leading to uncertainty in numerical weather forecasts and climate simulations. In this paper, the problem of treating microphysics in models is divided into two parts (i) how to represent the population of cloud and precipitation particles, given the impossibility of simulating all particles individually within a cloud, and (ii) uncertainties in the microphysical process rates owing to fundamental gaps in knowledge of cloud physics. The recently developed Lagrangian particle-based method is advocated as a way to address several conceptual and practical challenges of representing particle populations using traditional bulk and bin microphysics parameterization schemes. For addressing critical gaps in cloud physicd to accelerate improvements in microphysics schemes, leveraging the advances described in this paper related to process modeling (using Lagrangian particle-based schemes), laboratory experimentation, cloud and precipitation observations, and statistical methods.According to the data derived from several national and international registries, including SANI (Severe Asthma Network Italy), and considering the strong impact that frequent or regular use of oral corticosteroid has on quality of life (QoL) of severe asthmatics, as well as on the costs for managing corticosteroid-related diseases, oral corticosteroid sparing up to withdrawal should be considered a primary outcome in the management of severe asthma. New biologics have clearly demonstrated that this effect is possible, with concomitant reduction in the rate of exacerbations and in symptom control. Then, there is no reason for using so frequently oral corticosteroid before having explored all alternatives currently available for a large part of severe asthmatics.Data from electronic health records (EHR) are prone to errors, which are often correlated across multiple variables. The error structure is further complicated when analysis variables are derived as functions of two or more error-prone variables. Such errors can substantially impact estimates, yet we are unaware of methods that simultaneously account for errors in covariates and time-to-event outcomes. Using EHR data from 4217 patients, the hazard ratio for an AIDS-defining event associated with a 100 cell/mm3 increase in CD4 count at ART initiation was 0.74 (95%CI 0.68-0.80) using unvalidated data and 0.60 (95%CI 0.53-0.68) using fully validated data. Our goal is to obtain unbiased and efficient estimates after validating a random subset of records. We propose fitting discrete failure time models to the validated subsample and then multiply imputing values for unvalidated records. We demonstrate how this approach simultaneously addresses dependent errors in predictors, time-to-event outcomes, and inclusion criteria. Using the fully validated dataset as a gold standard, we compare the mean squared error of our estimates with those from the unvalidated dataset and the corresponding subsample-only dataset for various subsample sizes. By incorporating reasonably sized validated subsamples and appropriate imputation models, our approach had improved estimation over both the naive analysis and the analysis using only the validation subsample.The anatomy of the wrist and hand is complex and contains numerous small structures. Diphenhydramine Magnetic resonance imaging (MRI) is often an ideal imaging modality in the assessment of various traumatic and pathologic conditions of this region, and it is frequently performed after initial radiographs. In this manuscript we describe the normal anatomy, imaging techniques, and MRI findings of various traumatic and pathologic conditions of the wrist and hand including occult fractures, osteonecrosis, ligamentous and tendon injuries, and entrapment neuropathies.Diphenhydramine
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)