DEV Community

Cover image for ETL: Extracting a Person's Name from Text
Jaime
Jaime

Posted on

ETL: Extracting a Person's Name from Text

Let's say we want to scrape chicagomusiccompass.com.

As you can see, it has several cards, each representing an event. Now, let's check out the next one:

Name of a Music Event

Notice that the name of the event is:

jazmin bean: the traumatic livelihood tour
Enter fullscreen mode Exit fullscreen mode

So now the question is: How do we extract the artist's name from the text?

As a human, I can "easily" tell that jazmin bean is the artist—just check out their wiki page. But writing code to extract that name can get tricky.

We could think, "Hey, anything before the : should be the artist's name," which seems clever, right? It works for this case, but what about this one:

happy hour on the patio: kathryn & chris
Enter fullscreen mode Exit fullscreen mode

Here, the order is flipped. We could keep adding logic to handle different cases, but soon we'll end up with a ton of rules that are fragile and probably won't cover everything.

That’s where Named Entity Recognition (NER) models come in handy. They’re open source and can help us extract names from text. It won’t catch every case, but most of the time, they’ll get us the info we need.

With this approach, the extraction becomes way easier. I'm going with Python because the community around Machine Learning in Python is just unbeatable.

from gliner import GLiNER

model = GLiNER.from_pretrained("urchade/gliner_base")

text = "jazmin bean: the traumatic livelihood tour"
labels = ["person", "bands", "projects"]
entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
Enter fullscreen mode Exit fullscreen mode

Which generates the output:

jazmin bean => person
Enter fullscreen mode Exit fullscreen mode

Now, let’s take a look at that other case:

happy hour on the patio: kathryn & chris
Enter fullscreen mode Exit fullscreen mode

Output:

kathryn => person
chris => person
Enter fullscreen mode Exit fullscreen mode

source-GLiNER

Awesome, right? No more tedious logic to extract names, just use a model. Sure, it won’t cover every possible case, but for my project, this level of flexibility works just fine. If you need more accuracy, you can always:

  • Try a different model
  • Contribute to the existing model
  • Fork the project and tweak it to fit your needs

Conclusion

As a Software Developer, it's highly recommended to stay updated with the tools in the Machine Learning space. Not everything can be solved with just plain programming and logic—some challenges are better tackled using models and statistics.

Top comments (4)

Collapse
 
sreno77 profile image
Scott Reno

This is really cool!

Collapse
 
garciadiazjaime profile image
Jaime

thanks Scott, do you work with python?

kudos to the team behind GLiNER

Collapse
 
sreno77 profile image
Scott Reno

I do work with Python

Thread Thread
 
garciadiazjaime profile image
Jaime

I like Python, it has great resources for ML; I usually keep an eye on huggingface.co