Paneer is a fresh, soft ready-to-eat cheese that is susceptible to Listeria monocytogenes contamination, exemplified by product recalls in Australia, Canada, and the USA. Previous research demonstrates that L. monocytogenes grows in paneer, however there are no paneer-specific predictive models that quantify the effect of environmental conditions on L. monocytogenes viability. This study measured the viability of a five-strain cocktail of L. monocytogenes in freshly prepared paneer incubated at 4-40 °C. Growth rates were fitted with the extended Ratkowsky square root model, with growth rates ranging from 0.014 to 0.352 log10 CFU/h. In comparison with published models, only the ComBase L. monocytogenes broth model acceptably predicted growth (Bf = 1.01, Af = 1.12) versus the developed model. selleck compound The influence of paneer pH (5.0-6.0) and storage temperature (41-45 °C) on L. monocytogenes growth at the upper temperature growth boundary was described using a logistic model. These models provide quantitative tools to improve the safety of paneer processing conditions, shelf-life estimation, food safety management plans, and risk assessment.The effect of ohmic heating (OH) (50, 55, and 60 °C, 6 V/cm) on the inactivation kinetics (Weibull model) and morphological changes (scanning electron microscopy and flow cytometry) of Salmonella spp. in infant formula (IF) was evaluated. In addition, thermal load indicators (hydroxymethylfurfural and whey protein nitrogen index, HMF, and WPNI) and bioactive compounds (DPPH, total phenolics, ACE, α-amylase, and α-glucosidase inhibitory activities) were also studied. OH presented a more intense inactivation rate than conventional heating, resulting in a reduction of about 5 log CFU per mL at 60 °C in only 2.91 min, being also noted a greater cell membrane deformation, higher formation of bioactive compounds, and lower values for the thermal load parameters. Overall, OH contributed to retaining the nutritional value and improve food safety in IF processing.The international market of fresh-cut products has witnessed dramatic growth in recent years, stimulated by consumer's demand for healthy, nutritious and convenient foods. One of the main challenging issues for the quality and safety of these products is the potential microbial spoilage that can significantly reduce their shelf-life. The complete identification of fresh-cut product microbiota together with the evaluation of environmental factors impact on microbial composition is of primary importance. We therefore assessed the fungal communities associated with the spoilage of ready-to-eat (RTE) pineapple using a metagenetic amplicon sequencing approach, based on the ITS2 region. Our results revealed a significant variability on fungal species composition between the different batches of RTE pineapple. The initial microbiota composition was the main influencing factor and determined the progress of spoilage. Temperature and storage time were the secondary factors influencing spoilage and their impact was depending on the initial prevalent fungal species, which showed different responses to the various modifications. Our results strongly suggest that further large-scale sampling of RTE pineapple production should be conducted in order to assess the full biodiversity range of fungal community involved in the spoilage process and for unravelling the impact of important environmental factors shaping the initial microbiota.A collection of 33 Saccharomyces yeasts were used for wine fermentation with a sole nitrogen source ammonium and four individual aroma-inducing amino acids. The fermentation performance and chemical wine composition were evaluated. The most valuable nitrogen sources were valine as a fermentation promoter on non-cerevisiae strains, phenylalanine as fruity aromas enhancer whereas the ethanol yield was lessened by leucine and isoleucine. S. cerevisiae SC03 and S. kudriavzevii SK02 strains showed to be the greatest producers of fruity ethyl esters while S. kudriavzevii strains SK06 and SK07 by shortening the fermentation duration. S. uvarum strains produced the greatest succinic acid amounts and, together with S. eubayanus, they reached the highest production of 2-phenylethanol and its acetate ester; whereas S. kudriavzevii strains were found to be positively related to high glycerol production.Microbial contamination of sprouts commonly occurs because of the pathogens present on and in the seeds and the optimal conditions for bacteria growth provided during the germination and sprouting processes. This study examined the decontamination effect of slightly acidic electrolyzed water (SAEW), a 'generally recognized as safe' (GRAS) disinfectant, in the production process of alfalfa sprouts. SAEW with various available chlorine concentrations (ACC, 25, 35, 45 mg/L) and different pH levels (5.0, 5.7 and 6.4) was used to soak seeds for different length of time (0.5 and 6 h), after which the variations in natural Enterobacteriaceae, water absorption and seed germination (germination rate, weight and length of sprouts) were determined. The results showed that when the seeds were soaked with SAEW, albeit with different ACC (25, 35 and 45 mg/L) and pH levels (5.0, 5.7 and 6.4), a significant reduction of Enterobacteriaceae and no negative effect on sprout quality was observed. The water absorption and germination rates were also not significantly adversely affected by SAEW soaking. These findings suggest that SAEW could be used to decontaminate natural Enterobacteriaceae in the production of alfalfa sprouts, with no negative side effects on the alfalfa seeds.Model-based methods lose their performance in confronting with model uncertainties and disturbances. Accordingly, some degrees of adaptation to the involved conditions are required. In this paper, a novel robust adaptive scheme is proposed which guarantees the simultaneous identification and control of a system in the presence of external disturbances. Thereafter, the suggested algorithm is implemented on a 2-DOf spherical parallel robot as a stabilizer device. By identifying unknown parameters of Jacobian matrix, the relative identification error is obtained as 0.0207. Applying external excitations to the base, the ratio of end-effector to base orientation is acquired as 0.091, demonstrating proper stabilization in comparison with other two well-known methods. The proposed structure also reveals a reliable performance in tracking desired paths for the end-effector Euler angles.selleck compound
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)