Learning classifiers with imbalanced data can be strongly biased toward the majority class. Bax apoptosis To address this issue, several methods have been proposed using generative adversarial networks (GANs). Existing GAN-based methods, however, do not effectively utilize the relationship between a classifier and a generator. This article proposes a novel three-player structure consisting of a discriminator, a generator, and a classifier, along with decision boundary regularization. Our method is distinctive in which the generator is trained in cooperation with the classifier to provide minority samples that gradually expand the minority decision region, improving performance for imbalanced data classification. The proposed method outperforms the existing methods on real data sets as well as synthetic imbalanced data sets.This article is concerned with an issue of fixed time adaptive neural control for a class of uncertain nonlinear systems subject to hysteresis input and immeasurable states. The state observer and neural networks (NNs) are used to estimate the immeasurable states and approximate the unknown nonlinearities, respectively. On this foundation, an adaptive fixed time neural control strategy is developed. Technically, this control strategy is based on a novel fixed-time stability criterion. Different from the research on fixed-time control in the conventional literature, this article designs a new controller with two fractional exponential powers. In the light of the established stability criterion, the fixed-time stability of the systems is guaranteed under the proposed control scheme. Finally, a simulation study is carried out to test the performance of the developed control strategy.Among the various key networks in the human body, the nervous system occupies central importance. The debilitating effects of spinal cord injuries (SCI) impact a significant number of people throughout the world, and to date, there is no satisfactory method to treat them. In this paper, we review the major treatment techniques for SCI that include promising solutions based on information and communication technology (ICT) and identify the key characteristics of such systems. We then introduce two novel ICT-based treatment approaches for SCI. The first proposal is based on neural interface systems (NIS) with enhanced feedback, where the external machines are interfaced with the brain and the spinal cord such that the brain signals are directly routed to the limbs for movement. The second proposal relates to the design of self-organizing artificial neurons (ANs) that can be used to replace the injured or dead biological neurons. Apart from SCI treatment, the proposed methods may also be utilized as enabling technologies for neural interface applications by acting as bio-cyber interfaces between the nervous system and machines. Furthermore, under the framework of Internet of BioNano Things (IoBNT), experience gained from SCI treatment techniques can be transferred to nano communication research.Excessive beta band (13-30 Hz) oscillations have been observed in the basal ganglia (BG) of patients with Parkinson's disease (PD). Understanding the origin and transmission of beta band oscillations are important to improve treatments of PD, such as closed-loop deep brain stimulation (DBS). This paper proposed a model-based closed-loop GPi stimulation system to suppress pathological beta band oscillations of BG. The feedback nucleus was selected through the analysis of GPi oscillations variation when different synaptic currents were blocked, mainly projections from globus pallidus external (GPe), the subthalamic nucleus (STN) and striatum. Since simulation results proved the important role of synaptic current from GPe in shaping the excessive GPi beta band oscillations, the local field potential (LFP) of GPe was chosen as the feedback signal. That is to say, the feedback nucleus was selected based on the origin analysis of the pathological GPi beta band oscillation. The closed-loop algorithm was the multiplication of linear delayed feedback of the filtered GPe-LFP and modeled synaptic dynamics from GPe to GPi. Thus, the formed stimulation waveform was synaptic current like shape, which was proved to be more energy efficient than open-loop continuous DBS in suppressing GPi beta band oscillation. With the development of DBS devices, the efficiency of this closed-loop stimulation could be testified in animal model and clinical.In this paper, we consider the compressed video background subtraction problem that separates the background and foreground of a video from its compressed measurements. The background of a video usually lies in a low dimensional space and the foreground is usually sparse. More importantly, each video frame is a natural image that has textural patterns. By exploiting these properties, we develop a message passing algorithm termed offline denoising-based turbo message passing (DTMP). We show that these structural properties can be efficiently handled by the existing denoising techniques under the turbo message passing framework. We further extend the DTMP algorithm to the online scenario where the video data is collected in an online manner. The extension is based on the similarity/continuity between adjacent video frames. We adopt the optical flow method to refine the estimation of the foreground. We also adopt the sliding window based background estimation to reduce complexity. By exploiting the Gaussianity of messages, we develop the state evolution to characterize the per-iteration performance of offline and online DTMP. Comparing to the existing algorithms, DTMP can work at much lower compression rates, and can subtract the background successfully with a lower mean squared error and better visual quality for both offline and online compressed video background subtraction.Due to the development of Generative Adversarial Networks (GANs), significant progress has been achieved in text-to-image synthesis task. However, most previous works have only focus on learning the semantic consistency between paired images and sentences, without exploring the semantic correlation between different yet related sentences that describe the same image, which leads to significant visual variation among the synthesized images. Accordingly, in this article, we propose a new method for text-to-image synthesis, dubbed Multi-sentence Auxiliary Generative Adversarial Networks (MA-GAN); this approach not only improves the generation quality but also guarantees the generation similarity of related sentences by exploring the semantic correlation between different sentences describing the same image. More specifically, we propose a Single-sentence Generation and Multi-sentence Discrimination (SGMD) module that explores the semantic correlation between multiple related sentences in order to reduce the variation between their generated images and enhance the reliability of the generated results.Bax apoptosis
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)