This study pays a special attention to three phenolic endocrine disrupting compounds (EDCs), - bisphenol A (BPA), 4-nonylphenol (4-NP), and 4-tert-octylphenol (4-t-OP) - that are present in urban environments, resultant of several anthropogenic activities that can be also carried through rainfall runoff. We investigated the distributions of BPA, 4-NP, and 4-t-OP in Pearl River basin and estimated the mass loads in rainfall runoff, wastewater treatment plant (WWTP) effluents, and industrial wastewater from urbanized Huizhou and Dongguan regions. These three phenolic EDCs were detected frequently in tributaries and mainstream of Dongjiang River with the maximum 4-NP concentrations of 14,540 ng/L in surface waters and 3088 ng/g in sediments. selleck chemical BPA showed high concentrations in rainfall runoff samples with maximum concentrations of 5873 and 2397 ng/L in Huizhou and Dongguan regions, respectively, while concentrations for 4-NP and 4-t-OP were detected at tens to hundreds of nanograms per liter. Mass loads of phenolic EDCs from rainfall runoff were 3-62 times higher than those of WWTP effluents, suggesting rainfall runoff is an important source of phenolic EDCs into receiving waters. Sources and tributaries showed median to high estrogenic risks, while low to median risks were found in mainstream, implying the source control should be focused.Total organic carbon (TOC) has been suggested and utilized as an index of organic matter in aqueous phases. The overall performance of TOC is highly dependent on the method of oxidation of organic matter to carbon dioxide, such as high-temperature combustion (HTC) and wet chemical oxidation (WCO). HTC requires more energy and maintenance cost, it is a major barrier to the field application. In contrast, WCO is more suitable for the application of on-line monitoring systems due to requiring lower energy and easy maintenance. However, WCO shows lower oxidation than HTC, thus, oxidation performance should be improved for the application to the field. In this study, a dual radical system (DRS), including sulfate and hydroxyl radicals, was proposed to enhance oxidation ability. The DRS uses alkaline pH and persulfate to generate sulfate radicals, which have been used to activate hydroxyl radicals and oxidize organic matter. The oxidation mechanism for the DRS has been verified using model chemicals with different reaction rate constants. The applicability of the DRS has been confirmed using authentic wastewater with a high concentration of chloride. In this study, the DRS showed similar performance compared to the HTC within 10 % error range. The DRS shows similar oxidation performance with HTC even at a high concentration of chloride. DRS did not show interference by the presence of chloride up to 30,000 mg/L of chloride. Results of this study indicate that the DRS can enhance overall oxidation performance compared to the conventional WCO system.This study provided a holistic understanding of the sources, fate and behaviour of 142 compounds of emerging concern (CECs) throughout a river catchment impacted by 5 major urban areas. Of the incoming 169.3 kg d-1 of CECs entering the WwTWs, 167.9 kg d-1 were present in the liquid phase of influent and 1.4 kg d-1 were present in the solid phase (solid particulate matter, SPM). Analysis of SPM was important to determine accurate loads of incoming antidepressants and antifungal compounds, which are primarily found in the solid phase. Furthermore, these classes and the plasticiser, bisphenol A (BPA) were the highest contributors to CEC load in digested solids. Population normalised loads showed little variation across the catchment at 154 ± 12 mg d-1 inhabitant-1 indicating that population size is the main driver of CECs in the studied catchment. Across the catchment 154.6 kg d-1 were removed from the liquid phase during treatment processes. CECs discharged into surface waters from individual WwTWs contributed for the 84/138 CECs that were detected downstream of the WwTWs. For metformin this represents the equivalent of ∼1,890 tablets (1,000 mg per tablet) dissolved in the river water downstream of WwTW C.Metal-based catalysts in advanced oxidation processes (AOPs) are not stable under strong acidic condition due to the remarkable leaching, which will also lead to a secondary pollution. In this study, an aminated N-doped graphene hydrogel (ANGH) is synthesized from graphene oxide and ethylenediamine (EDA) via an in-situ hydrothermal process. The ANGH shows a free-standing structure and has high catalytic activity especially in phenol degradation under strong-acidic condition because of a non-radical dominated mechanism determined in this process. On the large scale, a longer lifetime of ∼1700 min for ANGH is obtained under strong-acidic condition on a dynamic amplifying device, 2.9 times longer than that at neutral condition. It is proposed that amine N can be protected by hydrogen ions from being oxidized, thus leading to the better stability. Meanwhile, the active sites of ANGH can transform from N containing groups into oxygenous groups, and the deactivated material can be reutilized 10 times for rhodamine B degradation on a large scale. The ANGH synthesized facilely and could be recycled repeatedly, which is also very stable in the strong acidic environment, thus should have great potential in wastewater remediation.Organophosphates (OPs) are highly toxic compounds, with widespread application in agricultural and chemical industries, whose introduction into the environment poses serious hazards to humans and ecological systems. To assess and ultimately mitigate these hazards, this study predicted the acute toxicity of OPs according to their chemical structure and administration route. The acute toxicity data of 161 OPs in two species via six different administration routes were manually collected and used to develop a series of quantitative structure-toxicity relationship (QSTR) models with robust and practical predictive abilities. The random forest algorithm was used to develop the models, employing both quantum chemical and two-dimensional descriptors according to OECD guidelines. Correlation results and feature similarities indicated that whereas acute toxicity data from rats and mice via the same administration route were combinable for modeling, data from different routes were not. Six QSTR models for each route in a single species and two QSTR models for a single route in the two species were constructed, achieving practical predictive performance.selleck chemical
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)