DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandomAdjustSharpness in PyTorch

Buy Me a Coffee

*Memos:

RandomAdjustSharpness() can randomly sharpen or blur an image with a given probability as shown below:

*Memos:

  • The 1st argument for initialization is sharpness_factor(Required-Type:int or float): *Memos:
    • x < 1 gives a blurred image.
    • 1 gives an original image.
    • 1 < x gives a sharpened image.
  • The 2nd argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos:
    • It's the probability of whether an image is solarized or not.
    • It must be 0 <= x <= 1.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAdjustSharpness

ras = RandomAdjustSharpness(sharpness_factor=100)
ras = RandomAdjustSharpness(sharpness_factor=100, p=0.5)

ras
# RandomAdjustSharpness(p=0.5, sharpness_factor=100)

ras.sharpness_factor
# 100

ras.p
# 0.5

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

sf1p1origin_data = OxfordIIITPet( # `sf` is sharpness_factor.
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=1, p=1)
)

sf2p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=2, p=1)
)

sf3p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=3, p=1)
)

sf4p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=4, p=1)
)

sf5p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=5, p=1)
)

sf10p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=10, p=1)
)

sf25p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=25, p=1)
)

sf50p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=50, p=1)
)

sf100p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=1)
)

sf1000p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=1000, p=1)
)

sf0p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=0, p=1)
)

sfn1p1_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-1, p=1)
)

sfn2p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-2, p=1)
)

sfn3p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-3, p=1)
)

sfn4p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-4, p=1)
)

sfn5p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-5, p=1)
)

sfn10p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-10, p=1)
)

sfn25p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-25, p=1)
)

sfn50p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-50, p=1)
)

sfn100p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-100, p=1)
)

sfn1000p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-1000, p=1)
)

sf100p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=0)
)

sf100p05_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=0.5)
    # transform=RandomAdjustSharpness(sharpness_factor=100)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=sf1p1origin_data, main_title="sf1p1origin_data")
show_images1(data=sf2p1_data, main_title="sf2p1_data")
show_images1(data=sf3p1_data, main_title="sf3p1_data")
show_images1(data=sf4p1_data, main_title="sf4p1_data")
show_images1(data=sf5p1_data, main_title="sf5p1_data")
show_images1(data=sf10p1_data, main_title="sf10p1_data")
show_images1(data=sf25p1_data, main_title="sf25p1_data")
show_images1(data=sf50p1_data, main_title="sf50p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf1000p1_data, main_title="sf1000p1_data")
print()
show_images1(data=sf1p1origin_data, main_title="sf1p1origin_data")
show_images1(data=sf0p1_data, main_title="sf0p1_data")
show_images1(data=sfn1p1_data, main_title="sfn1p1_data")
show_images1(data=sfn2p1_data, main_title="sfn2p1_data")
show_images1(data=sfn3p1_data, main_title="sfn3p1_data")
show_images1(data=sfn4p1_data, main_title="sfn4p1_data")
show_images1(data=sfn5p1_data, main_title="sfn5p1_data")
show_images1(data=sfn10p1_data, main_title="sfn10p1_data")
show_images1(data=sfn25p1_data, main_title="sfn25p1_data")
show_images1(data=sfn50p1_data, main_title="sfn50p1_data")
show_images1(data=sfn100p1_data, main_title="sfn100p1_data")
show_images1(data=sfn1000p1_data, main_title="sfn1000p1_data")
print()
show_images1(data=sf100p0_data, main_title="sf100p0_data")
show_images1(data=sf100p0_data, main_title="sf100p0_data")
show_images1(data=sf100p0_data, main_title="sf100p0_data")
print()
show_images1(data=sf100p05_data, main_title="sf100p05_data")
show_images1(data=sf100p05_data, main_title="sf100p05_data")
show_images1(data=sf100p05_data, main_title="sf100p05_data")
print()
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, sf=None, prob=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if sf != None:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rs = RandomAdjustSharpness(sharpness_factor=sf, p=prob)
            plt.imshow(X=rs(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="sf1p1origin_data", sf=1, prob=1)
show_images2(data=origin_data, main_title="sf2p1_data", sf=2, prob=1)
show_images2(data=origin_data, main_title="sf3p1_data", sf=3, prob=1)
show_images2(data=origin_data, main_title="sf4p1_data", sf=4, prob=1)
show_images2(data=origin_data, main_title="sf5p1_data", sf=5, prob=1)
show_images2(data=origin_data, main_title="sf10p1_data", sf=10, prob=1)
show_images2(data=origin_data, main_title="sf25p1_data", sf=25, prob=1)
show_images2(data=origin_data, main_title="sf50p1_data", sf=50, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf1000p1_data", sf=1000, prob=1)
print()
show_images2(data=origin_data, main_title="sf1p1origin_data", sf=1, prob=1)
show_images2(data=origin_data, main_title="sf0p1_data", sf=0, prob=1)
show_images2(data=origin_data, main_title="sfn1p1_data", sf=-1, prob=1)
show_images2(data=origin_data, main_title="sfn2p1_data", sf=-2, prob=1)
show_images2(data=origin_data, main_title="sfn3p1_data", sf=-3, prob=1)
show_images2(data=origin_data, main_title="sfn4p1_data", sf=-4, prob=1)
show_images2(data=origin_data, main_title="sfn5p1_data", sf=-5, prob=1)
show_images2(data=origin_data, main_title="sfn10p1_data", sf=-10, prob=1)
show_images2(data=origin_data, main_title="sfn25p1_data", sf=-25, prob=1)
show_images2(data=origin_data, main_title="sfn50p1_data", sf=-50, prob=1)
show_images2(data=origin_data, main_title="sfn100p1_data", sf=-100, prob=1)
show_images2(data=origin_data, main_title="sfn1000p1_data", sf=-1000, prob=1)
print()
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
print()
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
print()
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description

Top comments (0)