*Memos:
- My post explains OxfordIIITPet().
RandomAdjustSharpness() can randomly sharpen or blur an image with a given probability as shown below:
*Memos:
- The 1st argument for initialization is
sharpness_factor
(Required-Type:int
orfloat
): *Memos:-
x < 1
gives a blurred image. -
1
gives an original image. -
1 < x
gives a sharpened image.
-
- The 2nd argument for initialization is
p
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It's the probability of whether an image is solarized or not.
- It must be
0 <= x <= 1
.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAdjustSharpness
ras = RandomAdjustSharpness(sharpness_factor=100)
ras = RandomAdjustSharpness(sharpness_factor=100, p=0.5)
ras
# RandomAdjustSharpness(p=0.5, sharpness_factor=100)
ras.sharpness_factor
# 100
ras.p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
sf1p1origin_data = OxfordIIITPet( # `sf` is sharpness_factor.
root="data",
transform=RandomAdjustSharpness(sharpness_factor=1, p=1)
)
sf2p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=2, p=1)
)
sf3p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=3, p=1)
)
sf4p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=4, p=1)
)
sf5p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=5, p=1)
)
sf10p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=10, p=1)
)
sf25p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=25, p=1)
)
sf50p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=50, p=1)
)
sf100p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=100, p=1)
)
sf1000p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=1000, p=1)
)
sf0p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=0, p=1)
)
sfn1p1_data = OxfordIIITPet( # `n` is negative.
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-1, p=1)
)
sfn2p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-2, p=1)
)
sfn3p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-3, p=1)
)
sfn4p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-4, p=1)
)
sfn5p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-5, p=1)
)
sfn10p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-10, p=1)
)
sfn25p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-25, p=1)
)
sfn50p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-50, p=1)
)
sfn100p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-100, p=1)
)
sfn1000p1_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=-1000, p=1)
)
sf100p0_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=100, p=0)
)
sf100p05_data = OxfordIIITPet(
root="data",
transform=RandomAdjustSharpness(sharpness_factor=100, p=0.5)
# transform=RandomAdjustSharpness(sharpness_factor=100)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=sf1p1origin_data, main_title="sf1p1origin_data")
show_images1(data=sf2p1_data, main_title="sf2p1_data")
show_images1(data=sf3p1_data, main_title="sf3p1_data")
show_images1(data=sf4p1_data, main_title="sf4p1_data")
show_images1(data=sf5p1_data, main_title="sf5p1_data")
show_images1(data=sf10p1_data, main_title="sf10p1_data")
show_images1(data=sf25p1_data, main_title="sf25p1_data")
show_images1(data=sf50p1_data, main_title="sf50p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf1000p1_data, main_title="sf1000p1_data")
print()
show_images1(data=sf1p1origin_data, main_title="sf1p1origin_data")
show_images1(data=sf0p1_data, main_title="sf0p1_data")
show_images1(data=sfn1p1_data, main_title="sfn1p1_data")
show_images1(data=sfn2p1_data, main_title="sfn2p1_data")
show_images1(data=sfn3p1_data, main_title="sfn3p1_data")
show_images1(data=sfn4p1_data, main_title="sfn4p1_data")
show_images1(data=sfn5p1_data, main_title="sfn5p1_data")
show_images1(data=sfn10p1_data, main_title="sfn10p1_data")
show_images1(data=sfn25p1_data, main_title="sfn25p1_data")
show_images1(data=sfn50p1_data, main_title="sfn50p1_data")
show_images1(data=sfn100p1_data, main_title="sfn100p1_data")
show_images1(data=sfn1000p1_data, main_title="sfn1000p1_data")
print()
show_images1(data=sf100p0_data, main_title="sf100p0_data")
show_images1(data=sf100p0_data, main_title="sf100p0_data")
show_images1(data=sf100p0_data, main_title="sf100p0_data")
print()
show_images1(data=sf100p05_data, main_title="sf100p05_data")
show_images1(data=sf100p05_data, main_title="sf100p05_data")
show_images1(data=sf100p05_data, main_title="sf100p05_data")
print()
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, sf=None, prob=0):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if sf != None:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rs = RandomAdjustSharpness(sharpness_factor=sf, p=prob)
plt.imshow(X=rs(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="sf1p1origin_data", sf=1, prob=1)
show_images2(data=origin_data, main_title="sf2p1_data", sf=2, prob=1)
show_images2(data=origin_data, main_title="sf3p1_data", sf=3, prob=1)
show_images2(data=origin_data, main_title="sf4p1_data", sf=4, prob=1)
show_images2(data=origin_data, main_title="sf5p1_data", sf=5, prob=1)
show_images2(data=origin_data, main_title="sf10p1_data", sf=10, prob=1)
show_images2(data=origin_data, main_title="sf25p1_data", sf=25, prob=1)
show_images2(data=origin_data, main_title="sf50p1_data", sf=50, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf1000p1_data", sf=1000, prob=1)
print()
show_images2(data=origin_data, main_title="sf1p1origin_data", sf=1, prob=1)
show_images2(data=origin_data, main_title="sf0p1_data", sf=0, prob=1)
show_images2(data=origin_data, main_title="sfn1p1_data", sf=-1, prob=1)
show_images2(data=origin_data, main_title="sfn2p1_data", sf=-2, prob=1)
show_images2(data=origin_data, main_title="sfn3p1_data", sf=-3, prob=1)
show_images2(data=origin_data, main_title="sfn4p1_data", sf=-4, prob=1)
show_images2(data=origin_data, main_title="sfn5p1_data", sf=-5, prob=1)
show_images2(data=origin_data, main_title="sfn10p1_data", sf=-10, prob=1)
show_images2(data=origin_data, main_title="sfn25p1_data", sf=-25, prob=1)
show_images2(data=origin_data, main_title="sfn50p1_data", sf=-50, prob=1)
show_images2(data=origin_data, main_title="sfn100p1_data", sf=-100, prob=1)
show_images2(data=origin_data, main_title="sfn1000p1_data", sf=-1000, prob=1)
print()
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
print()
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
print()
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
Top comments (0)