DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandomAffine in PyTorch (2)

Buy Me a Coffee

*Memos:

RandomAffine() can do random rotation or random affine transformation for an image as shown below:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAffine
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=RandomAffine(degrees=[0, 0])
)

scale1_1origin_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[1, 1])
)

scale01_5_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.1, 5])
)

scale01_1_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.1, 1])
)

scale1_5_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[1, 5])
)

scale08_08_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.8, 0.8])
)

scale06_06_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.6, 0.6])
)

scale04_04_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.4, 0.4])
)

scale02_02_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.2, 0.2])
)

scale01_01_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.1, 0.1])
)

scale001_001_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.01, 0.01])
)

scale0001_0001_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.001, 0.001])
)

scale2_2_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[2, 2])
)

scale5_5_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[5, 5])
)

scale10_10_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[10, 10])
)

scale20_20_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[20, 20])
)

scale50_50_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[50, 50])
)

scale100_100_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[100, 100])
)

scale300_300_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[300, 300])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=scale1_1origin_data, main_title="scale1_1origin_data")
show_images1(data=scale01_5_data, main_title="scale01_5_data")
show_images1(data=scale01_1_data, main_title="scale01_1_data")
show_images1(data=scale1_5_data, main_title="scale1_5_data")
print()
show_images1(data=scale1_1origin_data, main_title="scale1_1origin_data")
show_images1(data=scale08_08_data, main_title="scale08_08_data")
show_images1(data=scale06_06_data, main_title="scale06_06_data")
show_images1(data=scale04_04_data, main_title="scale04_04_data")
show_images1(data=scale02_02_data, main_title="scale02_02_data")
show_images1(data=scale01_01_data, main_title="scale01_01_data")
show_images1(data=scale001_001_data, main_title="scale001_001_data")
show_images1(data=scale0001_0001_data, main_title="scale0001_0001_data")
print()
show_images1(data=scale1_1origin_data, main_title="scale1_1origin_data")
show_images1(data=scale2_2_data, main_title="scale2_2_data")
show_images1(data=scale5_5_data, main_title="scale5_5_data")
show_images1(data=scale10_10_data, main_title="scale10_10_data")
show_images1(data=scale20_20_data, main_title="scale20_20_data")
show_images1(data=scale50_50_data, main_title="scale50_50_data")
show_images1(data=scale100_100_data, main_title="scale100_100_data")
show_images1(data=scale300_300_data, main_title="scale300_300_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, d=0, t=None, sc=None, sh=None,
                 ip=InterpolationMode.NEAREST, f=0, c=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        ra = RandomAffine(degrees=d, translate=t, scale=sc, # Here
                          shear=sh, interpolation=ip, center=c, fill=f)
        plt.imshow(X=ra(im)) # Here
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="scale1_1origin_data", d=[0, 0], 
             sc=[1, 1])
show_images2(data=origin_data, main_title="scale01_5_data", d=[0.0, 0.0],
             sc=[0.1, 5])
show_images2(data=origin_data, main_title="scale01_1_data", d=[0.0, 0.0],
             sc=[0.1, 1])
show_images2(data=origin_data, main_title="scale1_5_data", d=[0.0, 0.0], 
             sc=[1, 5])
print()
show_images2(data=origin_data, main_title="scale1_1origin_data", d=[0, 0], 
             sc=[1, 1])
show_images2(data=origin_data, main_title="scale08_08_data", d=[0, 0],
             sc=[0.8, 0.8])
show_images2(data=origin_data, main_title="scale06_06_data", d=[0, 0],
             sc=[0.6, 0.6])
show_images2(data=origin_data, main_title="scale04_04_data", d=[0, 0],
             sc=[0.4, 0.4])
show_images2(data=origin_data, main_title="scale02_02_data", d=[0, 0],
             sc=[0.2, 0.2])
show_images2(data=origin_data, main_title="scale01_01_data", d=[0, 0],
             sc=[0.1, 0.1])
show_images2(data=origin_data, main_title="scale001_001_data", d=[0, 0],
             sc=[0.01, 0.01])
show_images2(data=origin_data, main_title="scale0001_0001_data", d=[0, 0], 
             sc=[0.001, 0.001])
print()
show_images2(data=origin_data, main_title="scale1_1origin_data", d=[0, 0], 
             sc=[1, 1])
show_images2(data=origin_data, main_title="scale2_2_data", d=[0, 0],
             sc=[2, 2])
show_images2(data=origin_data, main_title="scale5_5_data", d=[0, 0],
             sc=[5, 5])
show_images2(data=origin_data, main_title="scale10_10_data", d=[0, 0],
             sc=[10, 10])
show_images2(data=origin_data, main_title="scale20_20_data", d=[0, 0],
             sc=[20, 20])
show_images2(data=origin_data, main_title="scale50_50_data", d=[0, 0],
             sc=[50, 50])
show_images2(data=origin_data, main_title="scale100_100_data", d=[0, 0],
             sc=[100, 100])
show_images2(data=origin_data, main_title="scale300_300_data", d=[0, 0],
             sc=[300, 300])
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Top comments (0)