DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

RandomAffine in PyTorch

Buy Me a Coffee

*Memos:

RandomAffine() can do rotation or affine transformation for zero or more images as shown below:

*Memos:

  • The 1st argument for initialization is degrees(Required-Type:int, float or tuple/list(int or float)): *Memos:
    • It can do rotation.
    • It's the range of the degrees [min, max] so it must min <= max.
    • A degrees value is randomly taken from the range of [min, max].
    • A tuple/list must be the 1D with 2 elements.
    • A single value means [-degrees(min), +degrees(max)].
    • A single value must be 0 <= x.
  • The 2nd argument for initialization is translate(Optional-Default:None-Type:tuple/list(int or float)): *Memos:
    • It's [a, b]. *Each value must be 0 <= 1.
    • It must be the 1D with 2 elements.
    • The 1st element is for the horizontal shift randomly taken in the range of -img_width * a < horizontal shift < img_width * a.
    • The 2nd element is for the vertical shift randomly taken in the range of -img_height * b < vertical shift < img_height * b.
  • The 3rd argument for initialization is scale(Optional-Default:None-Type:tuple/list(int or float)): *Memos:
    • It's [min, max] so it must min <= max. *Each element must be 0 < x.
    • A scale value is randomly taken from the range of [min, max].
  • The 4th argument for initialization is shear(Optional-Default:None-Type:int, float or tuple/list(int or float)): *Memos:
    • It can do affine transformation with x and y.
    • It's [min, max, min, max] so it must min <= max. *Memos:
    • The 1st two elements are the range of x.
    • The 2nd two elements are the range of y.
    • x value is randomly taken from the range of the 1st two elements.
    • y value is randomly taken from the range of the 2nd two elements.
    • A tuple/list must be the 1D with 2 or 4 elements.
    • The tuple/list of 2 elements means [shear[0](min), shear[1](max), 0.0(min), 0.0(min)].
    • A single value means [-shear(min), +shear(max), 0.0(min), 0.0(max)].
    • A single value must be 0 <= x.
  • The 5th argument for initialization is interpolation(Optional-Default:InterpolationMode.NEAREST-Type:InterpolationMode).
  • The 6th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of images. *The background can be seen when doing rotation or affine transformation for images.
    • A tuple/list must be the 1D with 3 elements.
  • The 7th argument for initialization is center(Optional-Default:None-Type:tuple/list(int or float)). *It must be the 1D with 2 elements.
  • There is the 1st argument(Required-Type:PIL Image or tensor(int, float, complex or bool)). *It must be the 3D tensor which has zero or more elements.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAffine
from torchvision.transforms.functional import InterpolationMode

randomaffine = RandomAffine(degrees=90)
randomaffine = RandomAffine(degrees=[-90, 90],
                            translate=None,
                            scale=None,
                            shear=None,
                            interpolation=InterpolationMode.NEAREST,
                            fill=0,
                            center=None)
randomaffine
# RandomAffine(degrees=[-90, 90],
#              interpolation=InterpolationMode.NEAREST,
#              fill=0)

randomaffine.degrees
# [-90.0, 90.0]

print(randomaffine.translate)
# None

print(randomaffine.scale)
# None

print(randomaffine.shear)
# None

randomaffine.interpolation
# <InterpolationMode.NEAREST: 'nearest'>

randomaffine.fill
# 0

print(randomaffine.center)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=RandomAffine(degrees=[0, 0])
)

p90_data = OxfordIIITPet( # `p` is plus.
    root="data",
    transform=RandomAffine(degrees=90)
    # transform=RandomAffine(degrees=[-90, 90])
)

p90p90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[90, 90])
)

m90m90_data = OxfordIIITPet( # `m` is minus.
    root="data",
    transform=RandomAffine(degrees=[-90, -90])
)

p180p180_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[180, 180])
)

hrtran_data = OxfordIIITPet( # `hr` is horizontal and `tran` is translate.
    root="data",
    transform=RandomAffine(degrees=[0, 0], translate=[0.8, 0])
)

vrtran_data = OxfordIIITPet( # `vr` is vertical.
    root="data",
    transform=RandomAffine(degrees=[0, 0], translate=[0, 0.5])
)

hrvrtran_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], translate=[0.8, 0.5])
)

scale_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[1, 13])
)

m45m45fillgray_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-45, -45], fill=150)
)

p135p135fillpurple_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[135, 135], fill=[160, 32, 240])
)

p180p180offcenter_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[180, 180], center=[270, 200])
)

shearp90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0],
                           shear=90)
    # transform=RandomAffine(degrees=[0, 0], shear=[-90, 90, 0, 0])
)

shearp0p90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 90])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 90, 0, 0])
)

shearm90p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-90, 0])
    # transform=RandomAffine(degrees=[0, 0], shear=[-90, 0, 0, 0])
)

shearm90p90m90p90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-90, 90, -90, 90])
)

shearp0p0p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 0, 0])
)

shearp10p10p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[10, 10, 0, 0])
)

shearp20p20p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[20, 20, 0, 0])
)

shearp30p30p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[30, 30, 0, 0])
)

shearp40p40p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[40, 40, 0, 0])
)

shearp50p50p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[50, 50, 0, 0])
)

shearp60p60p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[60, 60, 0, 0])
)

shearp70p70p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[70, 70, 0, 0])
)

shearp80p80p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[80, 80, 0, 0])
)

shearp90p90p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[90, 90, 0, 0])
)

shearm10m10p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-10, -10, 0, 0])
)

shearm20m20p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-20, -20, 0, 0])
)

shearm30m30p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-30, -30, 0, 0])
)

shearm40m40p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-40, -40, 0, 0])
)

shearm50m50p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-50, -50, 0, 0])
)

shearm60m60p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-60, -60, 0, 0])
)

shearm70m70p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-70, -70, 0, 0])
)

shearm80m80p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-80, -80, 0, 0])
)

shearm90m90p0p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-90, -90, 0, 0])
)

shearp0p0p10p10_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 10, 10])
)

shearp0p0p20p20_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 20, 20])
)

shearp0p0p30p30_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 30, 30])
)

shearp0p0p40p40_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 40, 40])
)

shearp0p0p50p50_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 50, 50])
)

shearp0p0p60p60_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 60, 60])
)

shearp0p0p70p70_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 70, 70])
)

shearp0p0p80p80_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 80, 80])
)

shearp0p0p90p90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 90, 90])
)

shearp0p0m10m10_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -10, -10])
)

shearp0p0m20m20_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -20, -20])
)

shearp0p0m30m30_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -30, -30])
)

shearp0p0m40m40_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -40, -40])
)

shearp0p0m50m50_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -50, -50])
)

shearp0p0m60m60_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -60, -60])
)

shearp0p0m70m70_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -70, -70])
)

shearp0p0m80m80_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -80, -80])
)

shearp0p0m90m90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -90, -90])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p90_data, main_title="p90_data")
show_images1(data=p90p90_data, main_title="p90p90_data")
show_images1(data=m90m90_data, main_title="m90m90_data")
show_images1(data=p180p180_data, main_title="p180p180_data")
show_images1(data=hrtran_data, main_title="hrtran_data")
show_images1(data=vrtran_data, main_title="vrtran_data")
show_images1(data=hrvrtran_data, main_title="hrvrtran_data")
show_images1(data=scale_data, main_title="scale_data")
show_images1(data=m45m45fillgray_data, main_title="m45m45fillgray_data")
show_images1(data=p135p135fillpurple_data, 
             main_title="p135p135fillpurple_data")
show_images1(data=p180p180offcenter_data,
             main_title="p180p180offcenter_data")
print()
show_images1(data=shearp90_data, main_title="shearp90_data")
show_images1(data=shearp0p90_data, main_title="shearp0p90_data")
show_images1(data=shearm90p0_data, main_title="shearm90p0_data")
show_images1(data=shearm90p90m90p90_data, main_title="shearm90p90m90p90_data")
print()
show_images1(data=shearp0p0p0p0_data, main_title="shearp0p0p0p0_data")
show_images1(data=shearp10p10p0p0_data, main_title="shearp10p10p0p0_data")
show_images1(data=shearp20p20p0p0_data, main_title="shearp20p20p0p0_data")
show_images1(data=shearp30p30p0p0_data, main_title="shearp30p30p0p0_data")
show_images1(data=shearp40p40p0p0_data, main_title="shearp40p40p0p0_data")
show_images1(data=shearp50p50p0p0_data, main_title="shearp50p50p0p0_data")
show_images1(data=shearp60p60p0p0_data, main_title="shearp60p60p0p0_data")
show_images1(data=shearp70p70p0p0_data, main_title="shearp70p70p0p0_data")
show_images1(data=shearp80p80p0p0_data, main_title="shearp80p80p0p0_data")
show_images1(data=shearp90p90p0p0_data, main_title="shearp90p90p0p0_data")
print()
show_images1(data=shearp0p0p0p0_data, main_title="shearp0p0p0p0_data")
show_images1(data=shearm10m10p0p0_data, main_title="shearm10m10p0p0_data")
show_images1(data=shearm20m20p0p0_data, main_title="shearm20m20p0p0_data")
show_images1(data=shearm30m30p0p0_data, main_title="shearm30m30p0p0_data")
show_images1(data=shearm40m40p0p0_data, main_title="shearm40m40p0p0_data")
show_images1(data=shearm50m50p0p0_data, main_title="shearm50m50p0p0_data")
show_images1(data=shearm60m60p0p0_data, main_title="shearm60m60p0p0_data")
show_images1(data=shearm70m70p0p0_data, main_title="shearm70m70p0p0_data")
show_images1(data=shearm80m80p0p0_data, main_title="shearm80m80p0p0_data")
show_images1(data=shearm90m90p0p0_data, main_title="shearm90m90p0p0_data")
print()
show_images1(data=shearp0p0p0p0_data, main_title="shearp0p0p0p0_data")
show_images1(data=shearp0p0p10p10_data, main_title="shearp0p0p10p10_data")
show_images1(data=shearp0p0p20p20_data, main_title="shearp0p0p20p20_data")
show_images1(data=shearp0p0p30p30_data, main_title="shearp0p0p30p30_data")
show_images1(data=shearp0p0p40p40_data, main_title="shearp0p0p40p40_data")
show_images1(data=shearp0p0p50p50_data, main_title="shearp0p0p50p50_data")
show_images1(data=shearp0p0p60p60_data, main_title="shearp0p0p60p60_data")
show_images1(data=shearp0p0p70p70_data, main_title="shearp0p0p70p70_data")
show_images1(data=shearp0p0p80p80_data, main_title="shearp0p0p80p80_data")
show_images1(data=shearp0p0p90p90_data, main_title="shearp0p0p90p90_data")
print()
show_images1(data=shearp0p0p0p0_data, main_title="shearp0p0p0p0_data")
show_images1(data=shearp0p0m10m10_data, main_title="shearp0p0m10m10_data")
show_images1(data=shearp0p0m20m20_data, main_title="shearp0p0m20m20_data")
show_images1(data=shearp0p0m30m30_data, main_title="shearp0p0m30m30_data")
show_images1(data=shearp0p0m40m40_data, main_title="shearp0p0m40m40_data")
show_images1(data=shearp0p0m50m50_data, main_title="shearp0p0m50m50_data")
show_images1(data=shearp0p0m60m60_data, main_title="shearp0p0m60m60_data")
show_images1(data=shearp0p0m70m70_data, main_title="shearp0p0m70m70_data")
show_images1(data=shearp0p0m80m80_data, main_title="shearp0p0m80m80_data")
show_images1(data=shearp0p0m90m90_data, main_title="shearp0p0m90m90_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, d=0, t=None,
                 sc=None, sh=None, f=0, c=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        ra = RandomAffine(degrees=d, translate=t, scale=sc, # Here
                          shear=sh, center=c, fill=f)
        plt.imshow(X=ra(im)) # Here
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p90_data", d=90)
show_images2(data=origin_data, main_title="p90p90_data", d=[90, 90])
show_images2(data=origin_data, main_title="m90m90_data", d=[-90, -90])
show_images2(data=origin_data, main_title="p180p180_data", d=[180, 180])
show_images2(data=origin_data, main_title="hrtran_data",
             d=[0, 0], t=[0.8, 0])
show_images2(data=origin_data, main_title="vrtran_data",
             d=[0, 0], t=[0, 0.5])
show_images2(data=origin_data, main_title="hrvrtran_data",
             d=[0, 0], t=[0.8, 0.5])
show_images2(data=origin_data, main_title="scale_data",
             d=[0, 0], sc=[1, 13])
show_images2(data=origin_data, main_title="m45m45fillgray_data",
             d=[-45, -45], f=150)
show_images2(data=origin_data, main_title="p135p135fillpurple_data",
             d=[135, 135], f=[160, 32, 240])
show_images2(data=origin_data, main_title="p180p180offcenter_data",
             d=[180, 180], c=[270, 200])
print()
show_images2(data=origin_data, main_title="shearp90_data",
             d=[0, 0], sh=90)
show_images2(data=origin_data, main_title="shearp0p90_data",
             d=[0, 0], sh=[0, 90])
show_images2(data=origin_data, main_title="shearm90p0_data",
             d=[0, 0], sh=[-90, 0])
show_images2(data=origin_data, main_title="shearm90p90m90p90_data",
             d=[0, 0], sh=[-90, 90, -90, 90])
print()
show_images2(data=origin_data, main_title="shearp0p0p0p0_data",
             d=[0, 0], sh=[0, 0, 0, 0])
show_images2(data=origin_data, main_title="shearp10p10p0p0_data",
             d=[0, 0], sh=[10, 10, 0, 0])
show_images2(data=origin_data, main_title="shearp20p20p0p0_data",
             d=[0, 0], sh=[20, 20, 0, 0])
show_images2(data=origin_data, main_title="shearp30p30p0p0_data",
             d=[0, 0], sh=[30, 30, 0, 0])
show_images2(data=origin_data, main_title="shearp40p40p0p0_data",
             d=[0, 0], sh=[40, 40, 0, 0])
show_images2(data=origin_data, main_title="shearp50p50p0p0_data",
             d=[0, 0], sh=[50, 50, 0, 0])
show_images2(data=origin_data, main_title="shearp60p60p0p0_data",
             d=[0, 0], sh=[60, 60, 0, 0])
show_images2(data=origin_data, main_title="shearp70p70p0p0_data",
             d=[0, 0], sh=[70, 70, 0, 0])
show_images2(data=origin_data, main_title="shearp80p80p0p0_data",
             d=[0, 0], sh=[80, 80, 0, 0])
show_images2(data=origin_data, main_title="shearp90p90p0p0_data",
             d=[0, 0], sh=[90, 90, 0, 0])
print()
show_images2(data=origin_data, main_title="shearp0p0p0p0_data",
             d=[0, 0], sh=[0, 0, 0, 0])
show_images2(data=origin_data, main_title="shearm10m10p0p0_data",
             d=[0, 0], sh=[-10, -10, 0, 0])
show_images2(data=origin_data, main_title="shearm20m20p0p0_data",
             d=[0, 0], sh=[-20, -20, 0, 0])
show_images2(data=origin_data, main_title="shearm30m30p0p0_data",
             d=[0, 0], sh=[-30, -30, 0, 0])
show_images2(data=origin_data, main_title="shearm40m40p0p0_data",
             d=[0, 0], sh=[-40, -40, 0, 0])
show_images2(data=origin_data, main_title="shearm50m50p0p0_data",
             d=[0, 0], sh=[-50, -50, 0, 0])
show_images2(data=origin_data, main_title="shearm60m60p0p0_data",
             d=[0, 0], sh=[-60, -60, 0, 0])
show_images2(data=origin_data, main_title="shearm70m70p0p0_data",
             d=[0, 0], sh=[-70, -70, 0, 0])
show_images2(data=origin_data, main_title="shearm80m80p0p0_data",
             d=[0, 0], sh=[-80, -80, 0, 0])
show_images2(data=origin_data, main_title="shearm90m90p0p0_data",
             d=[0, 0], sh=[-90, -90, 0, 0])
print()
show_images2(data=origin_data, main_title="shearp0p0p0p0_data",
             d=[0, 0], sh=[0, 0, 0, 0])
show_images2(data=origin_data, main_title="shearp0p0p10p10_data",
             d=[0, 0], sh=[0, 0, 10, 10])
show_images2(data=origin_data, main_title="shearp0p0p20p20_data",
             d=[0, 0], sh=[0, 0, 20, 20])
show_images2(data=origin_data, main_title="shearp0p0p30p30_data",
             d=[0, 0], sh=[0, 0, 30, 30])
show_images2(data=origin_data, main_title="shearp0p0p40p40_data",
             d=[0, 0], sh=[0, 0, 40, 40])
show_images2(data=origin_data, main_title="shearp0p0p50p50_data",
             d=[0, 0], sh=[0, 0, 50, 50])
show_images2(data=origin_data, main_title="shearp0p0p60p60_data",
             d=[0, 0], sh=[0, 0, 60, 60])
show_images2(data=origin_data, main_title="shearp0p0p70p70_data",
             d=[0, 0], sh=[0, 0, 70, 70])
show_images2(data=origin_data, main_title="shearp0p0p80p80_data",
             d=[0, 0], sh=[0, 0, 80, 80])
show_images2(data=origin_data, main_title="shearp0p0p90p90_data",
             d=[0, 0], sh=[0, 0, 90, 90])
print()
show_images2(data=origin_data, main_title="shearp0p0p0p0_data",
             d=[0, 0], sh=[0, 0, 0, 0])
show_images2(data=origin_data, main_title="shearp0p0m10m10_data",
             d=[0, 0], sh=[0, 0, -10, -10])
show_images2(data=origin_data, main_title="shearp0p0m20m20_data",
             d=[0, 0], sh=[0, 0, -20, -20])
show_images2(data=origin_data, main_title="shearp0p0m30m30_data",
             d=[0, 0], sh=[0, 0, -30, -30])
show_images2(data=origin_data, main_title="shearp0p0m40m40_data",
             d=[0, 0], sh=[0, 0, -40, -40])
show_images2(data=origin_data, main_title="shearp0p0m50m50_data",
             d=[0, 0], sh=[0, 0, -50, -50])
show_images2(data=origin_data, main_title="shearp0p0m60m60_data",
             d=[0, 0], sh=[0, 0, -60, -60])
show_images2(data=origin_data, main_title="shearp0p0m70m70_data",
             d=[0, 0], sh=[0, 0, -70, -70])
show_images2(data=origin_data, main_title="shearp0p0m80m80_data",
             d=[0, 0], sh=[0, 0, -80, -80])
show_images2(data=origin_data, main_title="shearp0p0m90m90_data",
             d=[0, 0], sh=[0, 0, -90, -90])
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Top comments (0)