DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandomPerspective in PyTorch

Buy Me a Coffee

*Memos:

RandomPerspective() can do random perspective transformation for an image as shown below:

*Memos:

  • The 1st argument for initialization is distortion_scale(Optional-Default:0.5-Type:int or float): *Memos:
    • It can do perspective transformation.
    • It must be 0 <= x <= 1.
  • The 2nd argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos:
    • It's the probability of whether an image is done with perspective transformation or not.
    • It must be 0 <= x <= 1.
  • The 3rd argument for initialization is interpolation(Optional-Default:InterpolationMode.BILINEAR-Type:InterpolationMode).
  • The 4th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when doing perspective transformation for an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomPerspective
from torchvision.transforms.functional import InterpolationMode

randompers = RandomPerspective()
randompers = RandomPerspective(distortion_scale=0.5,
                               p=0.5,
                               interpolation=InterpolationMode.BILINEAR,
                               fill=0)
randompers
# RandomPerspective(p=0.5,
#                   distortion_scale=0.5,
#                   interpolation=InterpolationMode.BILINEAR,
#                   fill=0)

randompers.distortion_scale
# 0.5

randompers.p
# 0.5

randompers.interpolation
# <InterpolationMode.BILINEAR: 'bilinear'>

randompers.fill
# 0

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

ds0p1origin_data = OxfordIIITPet( # `ds` is distortion_scale.
    root="data",
    transform=RandomPerspective(distortion_scale=0, p=1)
)

ds01p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.1, p=1)
)

ds02p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.2, p=1)
)

ds03p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.3, p=1)
)

ds04p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.4, p=1)
)

ds05p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.5, p=1)
)

ds06p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.6, p=1)
)

ds07p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.7, p=1)
)

ds08p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.8, p=1)
)

ds09p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.9, p=1)
)

ds1p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=1, p=1)
)

p0_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=0)
)

p05_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=0.5)
)

p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=1)
)

p1fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=RandomPerspective(p=1, fill=150)
)

p1fpurple_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=1, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=ds0p1origin_data, main_title="ds0p1origin_data")
show_images1(data=ds01p1_data, main_title="ds01p1_data")
show_images1(data=ds02p1_data, main_title="ds02p1_data")
show_images1(data=ds03p1_data, main_title="ds03p1_data")
show_images1(data=ds04p1_data, main_title="ds04p1_data")
show_images1(data=ds05p1_data, main_title="ds05p1_data")
show_images1(data=ds06p1_data, main_title="ds06p1_data")
show_images1(data=ds07p1_data, main_title="ds07p1_data")
show_images1(data=ds08p1_data, main_title="ds08p1_data")
show_images1(data=ds09p1_data, main_title="ds09p1_data")
show_images1(data=ds1p1_data, main_title="ds1p1_data")
print()
show_images1(data=p0_data, main_title="p0_data")
show_images1(data=p0_data, main_title="p0_data")
show_images1(data=p0_data, main_title="p0_data")
print()
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
print()
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")
print()
show_images1(data=p1fgray_data, main_title="p1fgray_data")
show_images1(data=p1fpurple_data, main_title="p1fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ds=0.5, prob=0.5,
                 ip=InterpolationMode.BILINEAR, f=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        rp = RandomPerspective(distortion_scale=ds, p=prob, # Here
                               interpolation=ip, fill=f)
        plt.imshow(X=rp(im)) # Here
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data", ds=0)
print()
show_images2(data=origin_data, main_title="ds0p1origin_data", ds=0,
             prob=1)
show_images2(data=origin_data, main_title="ds01p1_data", ds=0.1, prob=1)
show_images2(data=origin_data, main_title="ds02p1_data", ds=0.2, prob=1)
show_images2(data=origin_data, main_title="ds03p1_data", ds=0.3, prob=1)
show_images2(data=origin_data, main_title="ds04p1_data", ds=0.4, prob=1)
show_images2(data=origin_data, main_title="ds05p1_data", ds=0.5, prob=1)
show_images2(data=origin_data, main_title="ds06p1_data", ds=0.6, prob=1)
show_images2(data=origin_data, main_title="ds07p1_data", ds=0.7, prob=1)
show_images2(data=origin_data, main_title="ds08p1_data", ds=0.8, prob=1)
show_images2(data=origin_data, main_title="ds09p1_data", ds=0.9, prob=1)
show_images2(data=origin_data, main_title="ds1p1_data", ds=1, prob=1)
print()
show_images2(data=origin_data, main_title="p0_data", prob=0)
show_images2(data=origin_data, main_title="p0_data", prob=0)
show_images2(data=origin_data, main_title="p0_data", prob=0)
print()
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
print()
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
print()
show_images2(data=origin_data, main_title="p1fgray_data", prob=1, f=150)
show_images2(data=origin_data, main_title="p1fpurple_data", prob=1,
             f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Top comments (0)