*Memos:
- My post explains RandomRotation().
- My post explains RandomAffine().
- My post explains OxfordIIITPet().
RandomPerspective() can do random perspective transformation for an image as shown below:
*Memos:
- The 1st argument for initialization is
distortion_scale
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It can do perspective transformation.
- It must be
0 <= x <= 1
.
- The 2nd argument for initialization is
p
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It's the probability of whether an image is done with perspective transformation or not.
- It must be
0 <= x <= 1
.
- The 3rd argument for initialization is
interpolation
(Optional-Default:InterpolationMode.BILINEAR
-Type:InterpolationMode). - The 4th argument for initialization is
fill
(Optional-Default:0
-Type:int
,float
ortuple
/list
(int
orfloat
)): *Memos:- It can change the background of an image. *The background can be seen when doing perspective transformation for an image.
- A tuple/list must be the 1D with 1 or 3 elements.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomPerspective
from torchvision.transforms.functional import InterpolationMode
randompers = RandomPerspective()
randompers = RandomPerspective(distortion_scale=0.5,
p=0.5,
interpolation=InterpolationMode.BILINEAR,
fill=0)
randompers
# RandomPerspective(p=0.5,
# distortion_scale=0.5,
# interpolation=InterpolationMode.BILINEAR,
# fill=0)
randompers.distortion_scale
# 0.5
randompers.p
# 0.5
randompers.interpolation
# <InterpolationMode.BILINEAR: 'bilinear'>
randompers.fill
# 0
origin_data = OxfordIIITPet(
root="data",
transform=None
)
ds0p1origin_data = OxfordIIITPet( # `ds` is distortion_scale.
root="data",
transform=RandomPerspective(distortion_scale=0, p=1)
)
ds01p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.1, p=1)
)
ds02p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.2, p=1)
)
ds03p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.3, p=1)
)
ds04p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.4, p=1)
)
ds05p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.5, p=1)
)
ds06p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.6, p=1)
)
ds07p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.7, p=1)
)
ds08p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.8, p=1)
)
ds09p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=0.9, p=1)
)
ds1p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(distortion_scale=1, p=1)
)
p0_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(p=0)
)
p05_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(p=0.5)
)
p1_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(p=1)
)
p1fgray_data = OxfordIIITPet( # `f` is fill.
root="data",
transform=RandomPerspective(p=1, fill=150)
)
p1fpurple_data = OxfordIIITPet(
root="data",
transform=RandomPerspective(p=1, fill=[160, 32, 240])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=ds0p1origin_data, main_title="ds0p1origin_data")
show_images1(data=ds01p1_data, main_title="ds01p1_data")
show_images1(data=ds02p1_data, main_title="ds02p1_data")
show_images1(data=ds03p1_data, main_title="ds03p1_data")
show_images1(data=ds04p1_data, main_title="ds04p1_data")
show_images1(data=ds05p1_data, main_title="ds05p1_data")
show_images1(data=ds06p1_data, main_title="ds06p1_data")
show_images1(data=ds07p1_data, main_title="ds07p1_data")
show_images1(data=ds08p1_data, main_title="ds08p1_data")
show_images1(data=ds09p1_data, main_title="ds09p1_data")
show_images1(data=ds1p1_data, main_title="ds1p1_data")
print()
show_images1(data=p0_data, main_title="p0_data")
show_images1(data=p0_data, main_title="p0_data")
show_images1(data=p0_data, main_title="p0_data")
print()
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
print()
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")
print()
show_images1(data=p1fgray_data, main_title="p1fgray_data")
show_images1(data=p1fpurple_data, main_title="p1fpurple_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ds=0.5, prob=0.5,
ip=InterpolationMode.BILINEAR, f=0):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rp = RandomPerspective(distortion_scale=ds, p=prob, # Here
interpolation=ip, fill=f)
plt.imshow(X=rp(im)) # Here
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data", ds=0)
print()
show_images2(data=origin_data, main_title="ds0p1origin_data", ds=0,
prob=1)
show_images2(data=origin_data, main_title="ds01p1_data", ds=0.1, prob=1)
show_images2(data=origin_data, main_title="ds02p1_data", ds=0.2, prob=1)
show_images2(data=origin_data, main_title="ds03p1_data", ds=0.3, prob=1)
show_images2(data=origin_data, main_title="ds04p1_data", ds=0.4, prob=1)
show_images2(data=origin_data, main_title="ds05p1_data", ds=0.5, prob=1)
show_images2(data=origin_data, main_title="ds06p1_data", ds=0.6, prob=1)
show_images2(data=origin_data, main_title="ds07p1_data", ds=0.7, prob=1)
show_images2(data=origin_data, main_title="ds08p1_data", ds=0.8, prob=1)
show_images2(data=origin_data, main_title="ds09p1_data", ds=0.9, prob=1)
show_images2(data=origin_data, main_title="ds1p1_data", ds=1, prob=1)
print()
show_images2(data=origin_data, main_title="p0_data", prob=0)
show_images2(data=origin_data, main_title="p0_data", prob=0)
show_images2(data=origin_data, main_title="p0_data", prob=0)
print()
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
print()
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
print()
show_images2(data=origin_data, main_title="p1fgray_data", prob=1, f=150)
show_images2(data=origin_data, main_title="p1fpurple_data", prob=1,
f=[160, 32, 240])
Top comments (0)