*Memos:
- My post explains RandomInvert().
- My post explains OxfordIIITPet().
RandomSolarize() can randomly solarize an image with a given probability as shown below:
*Memos:
- The 1st argument for initialization is
threshold
(Required-Type:int
orfloat
). *All pixels equal or above this value are inverted. - The 2nd argument for initialization is
p
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It's the probability of whether an image is solarized or not.
- It must be
0 <= x <= 1
.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomSolarize
rs = RandomSolarize(threshold=0)
rs = RandomSolarize(threshold=0, p=0.5)
rs
# RandomSolarize(p=0.5, threshold=0)
rs.threshold
# 0
rs.p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
t300p1_data = OxfordIIITPet( # `t` is threshold.
root="data",
transform=RandomSolarize(threshold=300, p=1)
)
t256p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=256, p=1)
)
t250p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=250, p=1)
)
t240p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=240, p=1)
)
t220p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=220, p=1)
)
t200p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=200, p=1)
)
t150p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=150, p=1)
)
t100p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=100, p=1)
)
t50p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=50, p=1)
)
t10p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=10, p=1)
)
t0p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=0, p=1)
)
tn10p1_data = OxfordIIITPet( # `n` is negative.
root="data",
transform=RandomSolarize(threshold=-10, p=1)
)
tn100p1_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=-100, p=1)
)
t0p0_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=0, p=0)
)
t0p05_data = OxfordIIITPet(
root="data",
transform=RandomSolarize(threshold=0, p=0.5)
# transform=RandomSolarize(threshold=0)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=t300p1_data, main_title="t300p1_data")
show_images1(data=t256p1_data, main_title="t256p1_data")
show_images1(data=t255p1_data, main_title="t255p1_data")
show_images1(data=t250p1_data, main_title="t250p1_data")
show_images1(data=t240p1_data, main_title="t240p1_data")
show_images1(data=t220p1_data, main_title="t220p1_data")
show_images1(data=t200p1_data, main_title="t200p1_data")
show_images1(data=t150p1_data, main_title="t150p1_data")
show_images1(data=t100p1_data, main_title="t100p1_data")
show_images1(data=t50p1_data, main_title="t50p1_data")
show_images1(data=t10p1_data, main_title="t10p1_data")
show_images1(data=t0p1_data, main_title="t0p1_data")
show_images1(data=tn10p1_data, main_title="tn10p1_data")
show_images1(data=tn100p1_data, main_title="tn100p1_data")
print()
show_images1(data=t0p0_data, main_title="t0p0_data")
show_images1(data=t0p0_data, main_title="t0p0_data")
show_images1(data=t0p0_data, main_title="t0p0_data")
print()
show_images1(data=t0p05_data, main_title="t0p05_data")
show_images1(data=t0p05_data, main_title="t0p05_data")
show_images1(data=t0p05_data, main_title="t0p05_data")
print()
show_images1(data=t0p1_data, main_title="t0p1_data")
show_images1(data=t0p1_data, main_title="t0p1_data")
show_images1(data=t0p1_data, main_title="t0p1_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, t=None, prob=0):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if t != None:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rs = RandomSolarize(threshold=t, p=prob)
plt.imshow(X=rs(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="t300p1_data", t=300, prob=1)
show_images2(data=origin_data, main_title="t256p1_data", t=256, prob=1)
show_images2(data=origin_data, main_title="t255p1_data", t=255, prob=1)
show_images2(data=origin_data, main_title="t250p1_data", t=250, prob=1)
show_images2(data=origin_data, main_title="t240p1_data", t=240, prob=1)
show_images2(data=origin_data, main_title="t220p1_data", t=220, prob=1)
show_images2(data=origin_data, main_title="t200p1_data", t=200, prob=1)
show_images2(data=origin_data, main_title="t150p1_data", t=150, prob=1)
show_images2(data=origin_data, main_title="t100p1_data", t=100, prob=1)
show_images2(data=origin_data, main_title="t50p1_data", t=50, prob=1)
show_images2(data=origin_data, main_title="t10p1_data", t=10, prob=1)
show_images2(data=origin_data, main_title="t0p1_data", t=0, prob=1)
show_images2(data=origin_data, main_title="tn10p1_data", t=-10, prob=1)
show_images2(data=origin_data, main_title="tn100p1_data", t=-100, prob=1)
print()
show_images2(data=origin_data, main_title="t0p0_data", t=0, prob=0)
show_images2(data=origin_data, main_title="t0p0_data", t=0, prob=0)
show_images2(data=origin_data, main_title="t0p0_data", t=0, prob=0)
print()
show_images2(data=origin_data, main_title="t0p05_data", t=0, prob=0.5)
show_images2(data=origin_data, main_title="t0p05_data", t=0, prob=0.5)
show_images2(data=origin_data, main_title="t0p05_data", t=0, prob=0.5)
print()
show_images2(data=origin_data, main_title="t0p1_data", t=0, prob=1)
show_images2(data=origin_data, main_title="t0p1_data", t=0, prob=1)
show_images2(data=origin_data, main_title="t0p1_data", t=0, prob=1)
Top comments (0)