The margin of exposure (MOE) approach was applied and an MOE of 30 or higher was considered as being indicative of a low health concern. The mean lower bound (LB)/upper bound (UB) chronic dietary exposure was below or at the level of the TDI. The 95th percentile LB/UB chronic dietary exposure was below the TDI in adolescents and in all adult age groups, but generally exceeded the TDI in toddlers and in other children, as well as in infants in some surveys. This may raise a health concern in these young age groups. The MOE values for the mean UB acute dietary exposure and for the 95th percentile UB raises a health concern for nickel-sensitised individuals. The MOE values for an acute scenario regarding consumption of a glass of water on an empty stomach do not raise a health concern.The EFSA Panel on Food Additives and Flavourings was requested to evaluate 35 flavouring substances attributed to the Flavouring Group Evaluation 69 (FGE.69), using the Procedure as outlined in the Commission Regulation (EC) No 1565/2000. Thirty-two substances have already been considered in FGE.69 [FL-no 02.033, 02.034, 02.036, 02.064, 02.065, 02.080, 07.004, 07.013, 07.022, 07.023, 07.025, 07.026, 07.028, 07.029, 07.032, 07.038, 07.040, 07.042, 07.070, 07.079, 07.086, 07.087, 09.144, 09.178, 09.179, 09.189, 09.200, 09.231, 09.249, 09.476, 09.486 and 09.501]. The remaining three substances [FL-no 02.066, 07.024 and 07.027] have been cleared with respect to genotoxicity in FGE.215Rev1 and are considered in this revision FGE.69Rev1. The substances were evaluated through a stepwise approach, namely the Procedure, that integrates information on the structure-activity relationships, intake from current uses, Threshold of Toxicological Concern (TTC) and available data on metabolism and toxicity. The Panel considered that for 33 flavouring substances evaluated through the Procedure the specifications are adequate and the Panel agrees with JECFA conclusions 'No safety concern at estimated levels of intake as flavouring substances' when based on the MSDI approach. For two flavouring substances [FL-no 07.038 and 07.042], there is insufficient information on their chemical identity to reach a final conclusion. For six substances [FL-no 02.066, 07.013, 07.024, 07.028, 07.032 and 07.086], there is no concern when the exposure was estimated based on the 'modified Theoretical Added Maximum Daily Intake' (mTAMDI) approach. For 28 substances, use levels are needed to calculate the mTAMDI estimates in order to identify those flavouring substances that need more refined exposure assessment and to finalise the evaluation accordingly. For one substance [FL-no 07.027], more reliable data on uses and use levels are required in order to finalise the safety evaluation.Multiple drug resistance (MDR) is a tough problem in developing hepatocellular carcinoma (HCC) therapy. Here, we developed TPGS-coated cationic liposomes with Bcl-2 siRNA corona to load doxorubicin (Dox) i.e., Bcl-2 siRNA/Dox-TPGS-LPs, to enhance anticancer effect of Dox in HCC-MDR. TPGS i.e., d-α-tocopheryl polyethylene glycol 1000 succinate, inhibited P-glycoprotein (P-gp) efflux pump and Bcl-2 siRNA suppressed anti-apoptotic Bcl-2 protein. The Bcl-2 siRNA loaded in the liposomal corona was observed under transmission electron microscopy. The stability and hemolysis evaluation demonstrated Bcl-2 siRNA/Dox-TPGS-LPs had good biocompatibility and siRNA-corona could protect the liposomal core to avoid the attachment of fetal bovine serum. In drug-resistant cells, TPGS effectively prolonged intracellular Dox retention time and siRNA-corona did improve the internalization of Dox from liposomes. In vitro and in vivo anticancer effect of this dual-functional nanostructure was examined in HCC-MDR Bel7402/5-FU tumor model. MTT assay confirmed the IC50 value of Dox was 20-50 fold higher in Bel7402/5-FU MDR cells than that in sensitive Bel7402 cells. Bcl-2 siRNA corona successfully entered the cytosol of Bel7402/5-FU MDR cells to downregulate Bcl-2 protein levels in vitro and in vivo. Bcl-2 siRNA/Dox-TPGS-LPs showed superior to TPGS- (or siRNA-) linked Dox liposomes in cell apoptosis and cytotoxicity assay in Bel7402/5-FU MDR cells, and 7-fold greater effect than free Dox in tumor growth inhibition of Bel7402/5-FU xenograft nude mice. In conclusion, TPGS-coated cationic liposomes with Bcl-2 siRNA corona had the capacity to inhibit MDR dual-pathways and subsequently improved the anti-tumor activity of the chemotherapeutic agent co-delivered to a level that cannot be achieved by inhibiting a MDR single way.One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors. Tumor cells generally display the higher oxidative level than normal cells, and also displayed the heterogeneity in terms of redox homeostasis level. We previously found that the disulfide bond-linkage demonstrates surprising oxidation-sensitivity to form the hydrophilic sulfoxide and sulphone groups. see more Herein, we develop oxidation-strengthened prodrug nanosystem loaded with pyropheophorbide a (PPa) to achieve light-activatable cascade drug release and enhance therapeutic efficacy. The disulfide bond-driven prodrug nanosystems not only respond to the redox-heterogeneity in tumor, but also respond to the exogenous oxidant (singlet oxygen) elicited by photosensitizers. Once the prodrug nanoparticles (NPs) are activated under irradiation, they would undergo an oxidative self-strengthened process, resulting in a facilitated drug cascade release. The IC50 value of the PPa@PTX-S-S NPs without irradiation was 2-fold higher than those of NPs plus irradiation. In vivo, the PPa@PTX prodrug NPs display prolonged systemic circulation and increased accumulation in tumor site. The PPa@PTX-S-S NPs showed much higher efficiency than free PTX or the PPa@PTX-C-C NPs to suppress the growth of 4T1 tumors. Therefore, this novel oxidation-strengthened disulfide-bridged prodrug-nanosystem has a great potential in the enhanced efficacy of cancer synergetic photochemotherapy.Fungal keratitis and endopthalmitis are serious eye diseases. Fluconazole (FL) is indicated for their treatment, but suffers from poor topical ocular availability. This study was intended to improve and prolong its ocular availability. FL niosomal vesicles were prepared using span 60. Also, polymeric nanoparticles were prepared using cationic Eudragit RS100 and Eudragit RL100. The investigated particles had adequate entrapment efficiency (EE%), nanoscale particle size and high zeta potential. Subsequently, formulations were optimized using full factorial design. FL-HP-β-CD complex was encapsulated in selected Eudragit nanoprticles (FL-CD-ERS1) and niosmal vesicles. The niosomes were further coated with cationic and bioadhesive chitosan (FL-CD-Nios-ch). EE% for FL-CD-ERS1 and FL-CD-Nios-ch formulations were 76.4% and 61.7%; particle sizes were 151.1 and 392 nm; also, they exhibited satisfactory zeta potential +40.1 and +28.5 mV. In situ gels were prepared by poloxamer P407, HPMC and chitosan and evaluated for gelling capacity, rheological behavior and gelling temperature.see more
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)