DEV Community

Skovsgaard McPherson
Skovsgaard McPherson

Posted on

Back along with para-iliac hernias: a different method.

The high pH and salinity of textile wastewater is a major hindrance to azo dye decolorization. In this study, a mixed bacterial consortium ZW1 was enriched under saline (10% salinity) and alkaline (pH 10.0) conditions to decolorize Methanil Yellow G (MY-G). Consortium ZW1 was mainly composed of Halomonas (49.8%), Marinobacter (30.7%) and Clostridiisalibacter (19.2%). The effects of physicochemical factors were systematically investigated, along with the degradation pathway and metagenome analysis. The co-carbon source was found to be necessary, and the addition of yeast extract led to 93.3% decolorization of 100 mg/L MY-G within 16 h (compared with 1.12% for control). The optimum pH, salinity, temperature and initial dye concentration were 8.0, 5-10%, 40 °C and 100 mg/L, respectively. The typical dye-related degradation enzymes were most effective at 10% salinity. Consortium ZW1 was also able to differentially decolorize five other direct and acidic dyes in a short period. Phototoxicity tests revealed the detoxification of MY-G degradation products. Combining UV-vis, FTIR and GC-MS detection, the MY-G degradation pathway by consortium ZW1 was proposed. Furthermore, metagenomic approach was used to elucidate the functional potential of genes in MY-G biodegradation. These results signify the broad potential application of halo-alkaliphilic consortia in the bioremediation of dyeing wastewater.For more than a decade the artificial sweeteners acesulfame (ACE) and sucralose (SUC) have been applied as tracers of the input of wastewater to environmental waters. Recently concerns have been raised that degradation of ACE during treatment may hinder or restrict its use as a wastewater tracer. In this study the value of ACE and SUC as tracers was reassessed based on samples of wastewater at 12 municipal wastewater treatment (MWWT) plants and from 7 septic systems and associated septic plumes in groundwater. The results indicated stability of SUC during MWWT at most plants, and variable removal of both sweeteners during some MWWT and in the septic wastewater systems. However, the residual concentrations of ACE and SUC in municipal effluent and in septic plumes indicate that both sweeteners remain valuable wastewater tracers. Saracatinib The mass ratio SUC/ACE was found to be a useful parameter for examining the relative persistence of these sweeteners.The adverse effects of diclofenac (DCF) on ecosystems and human health have induced increasing interest in its elimination in environment. DCF can be removed to some extent by nitrifying and heterotrophic microbes during wastewater treatment process. However, the actual roles of nitrifying and heterotrophic microbes in the transformation of DCF remain unclear. In this study, batch experiments were conducted to explore the biological transformation of DCF in enriched nitrifying sludge (NS), heterotrophic sludge (HS) and activated sludge (AS) systems. DCF was removed three times faster in enriched NS than in HS. Three transformation pathways of DCF in enriched NS, HS, and AS were proposed and compared. Hydroxylation was the crucial transformation step in the three transformation pathways. A faster hydroxylation reaction contributed to the faster removal of DCF in enriched NS. More transformation products (TPs) and reaction types (i.e. reductive dechlorination, sulphidation and methylation reactions) were observed in HS. Furthermore, some TPs that were resistant to degrade in enriched NS, such as DCF-benzoic acid, could be further transformed in HS. Accordingly, enriched NS could remove DCF more rapidly while HS could further transform some TPs resistant to degrade in enriched NS. Nitrifying and heterotrophic microbes may cooperatively and rapidly eliminate not only DCF, but also its TPs.Micro/nanoplastics have raised worldwide concern with extensive research on its transfer, toxicity and removal. However, the primary environmental process-adsorption of nanoplastics has not been uncovered since the discovery of nanosized plastics. Here, we synthesized nanoscale polystyrene (PS) particles with mean diameter of ∼40 nm to avoid unknown properties from purchased ones, and thoroughly investigated its adsorption towards two typical pharmaceuticals and personal care products (PPCPs) with distinct characteristics, which are antibiotic (ciprofloxacin) and endocrine disruptor (bisphenol-A). Moreover, UV radiation is applied to simulate aging process in natural cases, and the carbonyl index derived from FTIR spectra increased clearly from 0.183 to 0.387. The adsorption capacity at equilibrium of CIP and BPA increased from 0.15 to 4.07 to 4.92 and 8.71 mg/g after weathering, respectively. Besides, the effect of environmental factors (pH, humic acid, salinity and cations) was also studied. Furthermore, electrosorption technology is applied to remove nanoplastics in solution for the first time, with the capacity of 0.707 g nano-polystyrene/g AC and 0.322 g aged-nano-polystyrene/g AC, suggesting that adsorption under electric field is presumably a feasible tertiary treatment method targeted at nanoplastics in wastewater treatment plants (WWTPs).Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in activated sludge water resource recovery facilities (WRRF). Mathematical models for predicting activated sludge solids settling velocity include parameters that show irreducible epistemic uncertainty. Therefore, reliable and periodic calibration of the settling velocity model is key for predicting activated sludge process capacity, thus averting possible failures under wet-weather flow- and filamentous bulking conditions. The two main knowledge gaps addressed here are (1) Do constitutive functions for hindered and compression settling exist, for which all velocity parameters can be uniquely estimated? (2) What is the optimum sensor data requirement of developing reliable settling velocity functions? Innovative settling column sensor and full-scale data were used to identify and validate amended Vesilind function for hindered settling and a new exponential function for compression settling velocity using one-dimensional and computational fluid dynamics simulations.Saracatinib

Top comments (0)