Absence of a Th17 response and dampening of the Th1 response contributes to the formation of a chronic sino-nasal warzone.A Correction to this paper has been published https//doi.org/10.1038/s41467-020-19846-y .Platinum is a widely used first-line chemotherapy in treating non-small cell lung cancer of adenocarcinoma. Unfortunately, platinum resistance leads to relapse and therapeutic failure, enabling the development of platinum-sensitization strategies to be of great clinical significance. Here, we report that the upregulation of the NEDD8-conjugating enzyme UBE2F is an important way for lung cancer cells to escape platinum-induced cell apoptosis, which confers to insensitivity to platinum-based chemotherapy. Mechanistically, platinum treatment impairs the complex formation for proteasome-mediated UBE2F degradation, evidenced by the weaker association between UBE2F and Ring-box protein 1 (RBX1), an essential component of Cullin-Ring E3 ligases (CRLs), thus leading to the accumulation of UBE2F. The accumulated UBE2F promotes the neddylation levels and activity of Cullin5, in accord with the lower expression of pro-apoptotic protein NOXA, a well-known substrate of Cullin-Ring E3 ligase 5 (CRL5). Additionally, knockout of UBE2F significantly sensitizes lung cancer cells to platinum treatment by enhancing the protein levels of NOXA and subsequently promoting cell apoptosis. Methylene Blue concentration Our observations uncover a previously unknown regulatory mechanism of UBE2F stability upon platinum chemotherapy and suggest that UBE2F might be a novel therapy target for sensitizing lung cancer cells to platinum-based chemotherapy.A Correction to this paper has been published https//doi.org/10.1038/s41467-020-19663-3 .A Correction to this paper has been published https//doi.org/10.1038/s41467-020-19845-z .Structural studies of challenging targets such as G protein-coupled receptors (GPCRs) have accelerated during the last several years due to the development of new approaches, including small-wedge and serial crystallography. Here, we describe the deposition of seven datasets consisting of X-ray diffraction images acquired from lipidic cubic phase (LCP) grown microcrystals of two human GPCRs, Cysteinyl leukotriene receptors 1 and 2 (CysLT1R and CysLT2R), in complex with various antagonists. Five datasets were collected using small-wedge synchrotron crystallography (SWSX) at the European Synchrotron Radiation Facility with multiple crystals under cryo-conditions. Two datasets were collected using X-ray free electron laser (XFEL) serial femtosecond crystallography (SFX) at the Linac Coherent Light Source, with microcrystals delivered at room temperature into the beam within LCP matrix by a viscous media microextrusion injector. All seven datasets have been deposited in the open-access databases Zenodo and CXIDB. Here, we describe sample preparation and annotate crystallization conditions for each partial and full datasets. We also document full processing pipelines and provide wrapper scripts for SWSX and SFX data processing.Vasocative-intestinal-peptide (VIP+) and somatostatin (SST+) interneurons are involved in modulating barrel cortex activity and perception during active whisking. Here we identify a developmental transition point of structural and functional rearrangements onto these interneurons around the start of active sensation at P14. Using in vivo two-photon Ca2+ imaging, we find that before P14, both interneuron types respond stronger to a multi-whisker stimulus, whereas after P14 their responses diverge, with VIP+ cells losing their multi-whisker preference and SST+ neurons enhancing theirs. Additionally, we find that Ca2+ signaling dynamics increase in precision as the cells and network mature. Rabies virus tracings followed by tissue clearing, as well as photostimulation-coupled electrophysiology reveal that SST+ cells receive higher cross-barrel inputs compared to VIP+ neurons at both time points. In addition, whereas prior to P14 both cell types receive direct input from the sensory thalamus, after P14 VIP+ cells show reduced inputs and SST+ cells largely shift to motor-related thalamic nuclei.Previous studies have shown that copolymer compositions can significantly impact self-healing properties. This was accomplished by enhancement of van der Waals (vdW) forces which facilitate self-healing in relatively narrow copolymer compositional range. In this work we report the acceleration of self-healing in alternating/random hydrophobic acrylic-based copolymers in the presence of confined water molecules. Under these conditions competing vdW interactions do not allow H2O-diester H-bonding, thus forcing nBA side groups to adapt L-shape conformations, generating stronger dipole-dipole interactions resulting in shorter inter-chain distances compared to 'key-and-lock' associations without water. The perturbation of vdW forces upon mechanical damage in the presence of controllable amount of confined water is energetically unfavorable leading the enhancement of self-healing efficiency of hydrophobic copolymers by a factor of three. The concept may be applicable to other self-healing mechanisms involving reversible covalent bonding, supramolecular chemistry, or polymers with phase-separated morphologies.Long-lived plasma cells (LLPCs) are robust specialized antibody-secreting cells that mainly stay in the bone marrow and can persist a lifetime. As they can be generated by inducing the differentiation of B-lymphocytes, we investigated the possibility that human LLPCs might be engineered to express α-PD-1 monoclonal antibody to substitute recombinant α-PD-1 antitumor immunotherapy. To this end, we inserted an α-PD-1 cassette into the GAPDH locus through Cas9/sgRNA-guided specific integration in B-lymphocytes, which was mediated by an integrase-defective lentiviral vector. The edited B cells were capable of differentiating into LLPCs both in vitro and in vivo. Transcriptional profiling analysis confirmed that these cells were typical LLPCs. Importantly, these cells secreted de novo antibodies persistently, which were able to inhibit human melanoma growth via an antibody-mediated checkpoint blockade in xenograft-tumor mice. Our work suggests that the engineered LLPCs may be utilized as a vehicle to constantly produce special antibodies for long-term cellular immunotherapy to eradicate tumors and cellular reservoirs for various pathogens including human immunodeficiency virus type 1 (HIV-1) and hepatitis B virus (HBV).Methylene Blue concentration
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)