This study investigated effects of high-nitrogen source (urea) (R_UR) and protein-like nitrogen source (chicken manure) (R_CM) on humification process during lignocellulose biomass composting. It demonstrated that decreasing ratio of crude fiber (CF), polysaccharide (PS) and amino acids (AAs) in R_CM (29.75%, 53.93% and 73.73%, respectively) was higher than that in R_UR (14.73%, 28.74% and 51.92%, respectively). Humic substance (HS) concentration increased by 7.51% and 73.05% during R_UR and R_CM composting, respectively. The lower total links, more independent modularization and higher proportion of positive correlations between functional bacteria and organic components was observed with R_CM network than R_UR, indicating that protein-like nitrogen source supply may alleviate competition within bacterial community. Moreover, chicken manure supply favorably selects greater special functional bacterial taxa (Pusillimonas, Pedomicrobium, Romboustia and other 24 genus) related to AAs and stimulates the collaborative division of bacterial community. This is significance for strengthening effective transformation of organic components.Codigestion is an emerging approach to improve wastewater sludge biogas production and valorize food waste (FW). This study explores FW-derived biochar as a codigestion amendment for the first time and reports a matrix experiment using four diverse biochar amendments (mixed food waste, pinewood, bonechar, unamended control) across four FW types (vegetable, rice, chicken, mixed). It demonstrated that biochar derived from mixed FW can greatly improve the performance of biogas production and yield relative to unamended control and other biochars. The mixed food waste (MFW) biochar amendment led to 34.5%, 35.6%, and 47.5% increase in methane production from mixed FW compared to biochars made of wood, bone and non-amendment control, and the maximum methane production rate of MFW biochar reactors could be up to 6.7-9.9 times of the control. These results suggest that a more circular utilization of FW by integrating biochar production with codigestion can bring great benefits to FW management.In this study, two counterexamples of lignin preoxidation-hydroconversion were reported. First, two lignin feedstocks were preoxidized with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in acetonitrile with various dosages (15%, 30%, and 60%). Then, these preoxidized lignins (HELOs and MWLOs) were hydroconverted in supercritical ethanol catalyzed by Cu/CuMgAlOx. Ginsenoside Rg1 Total yields from HELOs were all higher than those from HEL, indicating the good promotion of DDQ preoxidation on the subsequent hydroconversion of HELOs, especially with the DDQ dosage of 15%. Differently, the promotion effect of DDQ preoxidation on the hydroconversion of MWLOs depended on the DDQ dosage as well as the reaction time. Through the comparison of two counterexamples, this work bursted the myth that preoxidation can always promote the subsequent hydroconversion of lignin, revealed the influence of lignin property, preoxidation degree, and reaction conditions on the subsequent hydroconversion of preoxidized lignin, and presented the new insight into the preoxidation-hydroconversion strategy for lignin.Here, a pilot-scale volatile fatty acids (VFAs) production system was established using food waste (FW) as feedstock under acidic conditions. The effects of pH (uncontrolled, 4.5, 5.5, and 6.5) on the FW acidification system were investigated. The results showed that VFAs concentration increased from 8419 to 15048 mg COD/L with pH level increasing from 4.5 to 6.5, and the highest VFA production yield (0.79 mgCOD/mgCOD) was obtained at a pH of 6.5. A larger proportion of butyric acid (52.9%) was observed, accompanied by a 23% decrease of acetic acid when pH was elevated to 6.5. Microbial analysis showed that Clostridium sensu stricto 1, Sporanaerobacter, and Proteiniphilum were dominant, which not only positively influence the hydrolysis and acidogenesis processes but also play an essential role in the conversion of acetic acid to butyric acid. In summary, this study provides a valuable reference for large-scale FW treatment to recover valuable resources.This study proposed a novel sludge pretreatment technology by combining freezing with potassium ferrate (PF) for synergistically enhancing the methane yield from sludge anaerobic digestion. Experimental results showed that the methane production was promoted from 170.1 ± 5.6 to 223.8 ± 7.0 mL/g VSS (volatile suspended solids) when pretreated by freezing coupled with 0.05 g/g TSS (total suspended solids) PF, with 31.6% increase. Kinetic model analysis indicated that the methane production potential and hydrolysis rate of sludge after combined pretreatment were enhanced by 32.0% and 15.0%, respectively. Mechanism studies revealed that freezing coupled with PF pretreatment effectively disrupted both extracellular polymeric substances (EPS) and microbial cells in sludge, consequently resulted in violent sludge disintegration. All the microbes responsible for hydrolysis, acidification and methanogenesis were found to be enriched by co-treatment of freezing and PF. Moreover, the fecal coliform in pretreated sludge was largely inactivated after anaerobic digestion.This study examined the performances of Acorus calamus, Pontederia cordata, and Alisma plantagoaquatica in removing nitrogen (N) from farmland wastewater. P. cordata showed the fastest rate of N removal, followed by A. plantagoaquatica, whereas that of A. calamus was slowest. P. cordata and A. plantagoaquatica achieving a greater rate of TN reduction in soil than that by A. calamus. A. plantagoaquatica demonstrated the highest N adsorption capacity, 32.6% and 392.1% higher than that of P. cordata and A. calamus, respectively. The higher potential nitrification and denitrification rate, and abundance of functional genes in the P. cordata microcosm resulted in a stronger process of nitrification-denitrification, which accounted for 65.99% of TN loss. Plant uptake and nitrification-denitrification were responsible for 50.06% and 49.94% of TN removed within the A. plantagoaquatica. Nitrification-denitrification accounted for 86.35% of TN loss in A. calamus. These findings helped to insight into N removal mechanisms in different plants.Ginsenoside Rg1
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)