Retrieval-Augmented Generation (RAG) combines retrieval systems with generative models to provide more accurate, context-rich answers. Deep Seek R1 is a powerful tool that helps us build such systems efficiently by integrating retrieval capabilities with advanced language models. In this blog, we’ll walk through the process of creating a RAG application from scratch using Deep Seek R1.
1. Understanding the Architecture of RAG
RAG applications are built around three primary components:
- Retriever: Finds relevant documents from a knowledge base.
- Generator: Uses retrieved documents as context to generate answers.
- Knowledge Base: Stores all the documents or information in an easily retrievable format.
2. Setting Up the Environment
Step 1: Install Required Dependencies
To get started, ensure you have Python installed. Then, set up the required libraries, including Deep Seek R1. Install the dependencies using the following commands:
pip install deep-seek-r1 langchain transformers sentence-transformers faiss-cpu
Step 2: Initialize the Project
Create a new project directory and set up a virtual environment for isolation.
mkdir rag-deepseek-app
cd rag-deepseek-app
python -m venv venv
source venv/bin/activate # or venv\Scripts\activate for Windows
3. Building the Knowledge Base
The knowledge base is the heart of a RAG system. For this example, we’ll use text documents, but you can extend it to PDFs, databases, or other formats.
Step 1: Prepare the Data
Organize your documents in a folder named data
.
rag-deepseek-app/
└── data/
├── doc1.txt
├── doc2.txt
└── doc3.txt
Step 2: Embed the Documents
Use Deep Seek R1 to embed the documents for efficient retrieval.
from deep_seek_r1 import DeepSeekRetriever
from sentence_transformers import SentenceTransformer
import os
# Load the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Prepare data
data_dir = './data'
documents = []
for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), 'r') as file:
documents.append(file.read())
# Embed the documents
embeddings = embedding_model.encode(documents, convert_to_tensor=True)
# Initialize the retriever
retriever = DeepSeekRetriever()
retriever.add_documents(documents, embeddings)
retriever.save('knowledge_base.ds') # Save the retriever state
4. Building the Retrieval and Generation Pipeline
Now, we’ll set up the pipeline to retrieve relevant documents and generate responses.
Step 1: Load the Retriever
retriever = DeepSeekRetriever.load('knowledge_base.ds')
Step 2: Integrate the Generator
We’ll use OpenAI’s GPT-based models or Hugging Face Transformers for generation.
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the generator model
generator_model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
def generate_response(query, retrieved_docs):
# Combine the query and retrieved documents
input_text = query + "\n\n" + "\n".join(retrieved_docs)
# Tokenize and generate a response
inputs = tokenizer.encode(input_text, return_tensors='pt', max_length=512, truncation=True)
outputs = generator_model.generate(inputs, max_length=150, num_return_sequences=1)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
5. Querying the System
Here’s how we put everything together to handle user queries.
def rag_query(query):
# Retrieve relevant documents
retrieved_docs = retriever.search(query, top_k=3)
# Generate a response
response = generate_response(query, retrieved_docs)
return response
Example Query
query = "What is the impact of climate change on agriculture?"
response = rag_query(query)
print(response)
6. Deploying the Application
To make the RAG system accessible, you can deploy it using Flask or FastAPI.
Step 1: Set Up Flask
Install Flask:
pip install flask
Create a app.py
file:
from flask import Flask, request, jsonify
from deep_seek_r1 import DeepSeekRetriever
from transformers import AutoModelForCausalLM, AutoTokenizer
# Initialize components
retriever = DeepSeekRetriever.load('knowledge_base.ds')
generator_model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
def generate_response(query, retrieved_docs):
input_text = query + "\n\n" + "\n".join(retrieved_docs)
inputs = tokenizer.encode(input_text, return_tensors='pt', max_length=512, truncation=True)
outputs = generator_model.generate(inputs, max_length=150, num_return_sequences=1)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
app = Flask(__name__)
@app.route('/query', methods=['POST'])
def query():
data = request.json
query = data.get('query', '')
if not query:
return jsonify({'error': 'Query is required'}), 400
retrieved_docs = retriever.search(query, top_k=3)
response = generate_response(query, retrieved_docs)
return jsonify({'response': response})
if __name__ == '__main__':
app.run(debug=True)
Run the server:
python app.py
Step 2: Test the API
Use Postman or curl
to send a query:
curl -X POST http://127.0.0.1:5000/query -H "Content-Type: application/json" -d '{"query": "What is the future of AI in healthcare?"}'
Top comments (0)