DEV Community

Munk Kokholm
Munk Kokholm

Posted on

Under used Green Strawberry (Musa acuminata Eee) Flours to produce Fiber Ripe Frankfurter-Type Sausages.

Selective and efficient hydrosilylations of esters to alcohols by a well-defined manganese(I) complex with a commercially available bisphosphine ligand are described. These reactions are easy alternatives for stoichiometric hydride reduction or hydrogenation, and employing cheap, abundant, and nonprecious metal is attractive. The hydrosilylations were performed at 100 °C under solvent-free conditions with low catalyst loading. A large variety of aromatic, aliphatic, and cyclic esters bearing different functional groups were selectively converted into the corresponding alcohols in good yields.We developed a practical synthetic method for fluorine-18 (18F)-labeled pitavastatin ([18F]PTV) as a positron emission tomography (PET) tracer to assess hepatobiliary transporter activity and conducted PET scan as a preclinical study for proof-of-concept in rats. This method is a one-pot synthesis involving aromatic 18F-fluorination of an arylboronic acid ester followed by deprotection under acidic conditions, which can be reproduced in general clinical sites equipped with a standard radiolabeling system due to the simplified procedure. PET imaging confirmed that intravenously administered [18F]PTV was rapidly accumulated in the liver, and gradually transferred into the intestinal lumen through the bile duct. Radiometabolite analysis showed that [18F]PTV was metabolically stable, and 80% of the injected dose was detected as the unchanged form in both blood and bile. We applied integration plot analysis to assess tissue uptake clearance (CLuptake, liver and CLuptake, kidney) and canalicular efflux clearance (CLint, bile), and examined the effects of inhibitors on membrane transport. Treatment with rifampicin, an organic anion transporting polypeptide inhibitor, significantly reduced CLuptake, liver and CLuptake, kidney to 44% and 64% of control, respectively. In contrast, Ko143, a breast cancer resistance protein inhibitor, did not affect CLuptake, liver but significantly reduced CLint, bile to 39% of control without change in [18F]PTV blood concentration. In addition, we found decreased CLuptake, liver and increased CLint, bile in Eisai hyperbilirubinemic rats in response to altered expression levels of transporters. We expect that [18F]PTV can be translated into clinical application, as our synthetic method does not need special apparatuses in the radiolabeling system and PET scan with [18F]PTV can quantitatively evaluate transporter activity in vivo.Two crystalline and five amorphous benzimidazole polymers (BINP) were synthesized and conjugated to porous silica via amine and aldehyde-based materials by a simple reflux procedure. The resulting polymers were subject to thermal analysis for monitoring and quantification of the adsorption and desorption of CO2. All the polymers were capable of adsorbing CO2 from a flowing stream of only 80 mL/min at 25 °C. The adsorbed CO2 onto the polymers were effectively desorbed at room temperature, illustrating the potential application of such polymers for repeated adsorption/desorption of CO2. The CO2 adsorption capacities of these polymers were dependent upon their nitrogen content, specific surface area, and pore size. The available nitrogen atoms for binding to the carbon of CO2 via tetrel bonds also plays an important role in the capture of this gas. Minimal and much lower CO2 adsorption was also noted with two crystalline polymers, compared to the five amorphous counterparts. BI-3231 cell line Intermolecular hydrogen bonding and π-π interaction effectively prevented the polymer N sites of the crystalline polymers from interacting with polarized CO2 molecules.Liquid applied to a chemically patterned (wetting/nonwetting, lyophilic/lyophobic) substrate forms a 3-dimensional contoured surface, the shape of which depends on the volume of liquid applied and the shape of the three-phase contact lines of air (or other phase in contact), liquid, and the wetted pattern. The resulting binary contoured interface with air, which consists of flat unwetted regions of the substrate and the mean curvature liquid-vapor interfaces of the sessile structures, can be used as a mold for imprinting solid polymers by curing liquid resins in contact. The success, flexibility with regard to shape, and reproducibility of this molding process depend on numerous issues. These include the substrate surface chemistry, the liquid application method, properties of the liquid (vapor pressure, surface tension, viscosity, and permeability in the resin), the contact angles of the liquid on the patterned substrate, and the resin curing chemistry and conditions. We investigate the room temperature platused to adjust feature shape.Using all-atom molecular dynamics simulations and network analysis, we investigated the effect of membrane cholesterol level on the structure of organized water at the interface between bulk water and a model lipid membrane. Irrespective of membrane cholesterol content, interfacial water structure is largely perturbed by the presence of the membrane surface due to water-phospholipid interactions, which deplete the chance of hydrogen bonding among water molecules. In contrast, the addition of cholesterol suppresses the disturbing effect of the membrane on water-water hydrogen bonding as cholesterol provides a more bulk-like environment for the interfacial water molecules, as evidenced by enhancement of local water density, a reduction in their orientational bias, and increases in both the number of hydrogen bonds and the topological complexity of the hydrogen bond network.Using the DUD-E+ benchmark, we explore the impact of using a single protein pocket or ligand for virtual screening compared with using ensembles of alternative pockets, ligands, and sets thereof. For both structure-based and ligand-based approaches, the precise characterization of the binding site in question had a significant impact on screening performance. Using the single original DUD-E protein, Surflex-Dock yielded mean ROC area of 0.81 ± 0.11. Using the cognate ligand instead, with the eSim method for screening, yielded 0.77 ± 0.14. Moving to ensembles of five protein pocket variants increased docking performance to 0.84 ± 0.09. Results for the analogous ligand-based approach (using the five crystallographically aligned cognate ligands) was 0.83 ± 0.11. Using the same ligands, but making use of an automatically generated mutual alignment, yielded mean AUC nearly as good as from single-structure docking 0.80 ± 0.12. Detailed results and statistical analyses show that structure- and ligand-based methods are complementary and can be fruitfully combined to enhance screening efficiency.BI-3231 cell line

Top comments (0)