DEV Community

MacKay Brinch
MacKay Brinch

Posted on

Pollution-driven morphological plasticity in the flowing water environment.

5, and only 3 of 9 (33%) using a cut-off of OD ≥0.3. MAIN LIMITATIONS Horses examined in this study were new arrivals at a welfare centre rather than from a general, well-managed, equid population. As a retrospective clinical study, the laboratory test results could not be repeated for further confirmation. CONCLUSIONS Caution is advised when relying on seronegativity to antigens A and C in order to discount the possibility of chronic carriage of S. equi in guttural pouches. This article is protected by copyright. All rights reserved.Water disinfection, primarily by chlorination, is one of the greatest achievements of public health. However, more than half a century after its introduction, studies in the 1970s reported that (a) chlorine interacted with organic matter in the water to form disinfection by-products (DBPs); (b) two DBPs, chloroform and bromoform, both trihalomethanes (THMs), were rodent carcinogens; (c) three brominated THMs were mutagenic; in six studies chlorinated drinking waters in the U.S. and Canada were mutagenic; and (d) in one epidemiological study there was an association between bladder cancer mortality and THM exposure. This led the U.S. Environmental Protection Agency to issue its first DBP regulation in 1979. Forty years later, >600 DBPs have been characterized, 20/22 have been shown to be rodent carcinogens, >100 have been shown to be genotoxic, and 1000s of water samples have been found to be mutagenic. Data support a hypothesis that long-term dermal/inhalation exposure to certain levels of the three brominated THMs, as well as oral exposure to the haloacetic acids, combined with a specific genotype may increase the risk for bladder cancer for a small but significant population group. Improved water-treatment methods and stricter regulations have likely reduced such risks over the years, and further reductions in potential risk are anticipated with the application of advanced water-treatment methods and wider application of drinking water regulations. This 40-year research effort is a remarkable example of sustained cooperation between academic and government scientists, along with public/private water companies, to find answers to a pressing public health question. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.Polyuria-polydipsia syndrome consists of the three main entities central or nephrogenic diabetes insipidus and primary polydipsia. Reliable distinction between these diagnoses is essential as treatment differs substantially, with the wrong treatment potentially leading to serious complications. Past diagnostic measures using the classical water deprivation test had several pitfalls and clinicians were often left with uncertainity concerning the diagnosis. With the establishment of copeptin, a stable and reliable surrogate marker for arginine vasopressin, diagnosis of the polyuria-polydipsia syndrome has been newly evaluated. Whereas unstimulated basal copeptin measurement reliably diagnoses nephrogenic diabetes insipidus, two new tests using stimulated copeptin cutoff levels showed a high diagnostic accuracy in differentiating central diabetes insipidus from primary polydipsia. For the hypertonic saline infusion test, osmotic stimulation via the induction of hypernatraemia is used. This makes the test highly reliable and superior to the classical water deprivation test, but also requires close supervision and the availability of rapid sodium measurements to guarantee the safety of the test. Alternatively, arginine infusion can be used to stimulate copeptin release, opening the doors for an even shorter and safer diagnostic test. The test protocols of the two tests are provided and a new copeptin-based diagnostic algorithm is proposed to reliably differentiate between the different entities. Furthermore, the role of copeptin as a predictive marker for the development of diabetes insipidus following surgical procedures in the sellar region is described.In Switzerland, the COVID-19 epidemic is progressively slowing down owing to “social distancing” measures introduced by the Federal Council on 16 March 2020. However, the gradual ease of these measures may initiate a second epidemic wave, the length and intensity of which are difficult to anticipate. In this context, hospitals must prepare for a potential increase in intensive care unit (ICU) admissions of patients with acute respiratory distress syndrome. Here, we introduce icumonitoring.ch, a platform providing hospital-level projections for ICU occupancy. We combined current data on the number of beds and ventilators with canton-level projections of COVID-19 cases from two S-E-I-R models. We disaggregated epidemic projection in each hospital in Switzerland for the number of COVID-19 cases, hospitalisations, hospitalisations in ICU, and ventilators in use. The platform is updated every 3-4 days and can incorporate projections from other modelling teams to inform decision makers with a range of epidemic scenarios for future hospital occupancy.Overlapping genes are commonplace in viruses and play an important role in their function and evolution. For these genes, molecular coevolution may be seen as a mechanism to decrease the evolutionary constraints of amino acid positions in the overlapping regions and to tolerate or compensate unfavorable mutations. Tracing these mutational sites, could help to gain insight on the direct or indirect effect of the mutations in the corresponding overlapping proteins. In the past, coevolution analysis has been used to identify residue pairs and coevolutionary signatures within or between proteins that served as markers of physical interactions and/or functional relationships. Coevolution in OVerlapped sequences by Tree analysis (COVTree) is a web server providing the online analysis of coevolving amino-acid pairs in overlapping genes, where residues might be located inside or outside the overlapping region. Selleckchem Novobiocin COVTree is designed to handle protein families with various characteristics, among which those that typically display a small number of highly conserved sequences. It is based on BIS2, a fast version of the coevolution analysis tool Blocks in Sequences (BIS). COVTree provides a rich and interactive graphical interface to ease biological interpretation of the results and it is openly accessible at http//www.lcqb.upmc.fr/COVTree/. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.Selleckchem Novobiocin

Top comments (0)