Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Dexamethasone, a uniquely potent corticosteroid, is frequently administered to patients with brain tumors to decrease tumor-associated edema, but limited data exist describing how dexamethasone affects the immune system systemically and intratumorally in patients with glioblastoma (GBM), particularly in the context of immunotherapy.
We evaluated the dose-dependent effects of dexamethasone when administered with programmed cell death 1 (PD-1) blockade and/or radiotherapy in immunocompetent C57BL/6 mice with syngeneic GL261 and CT-2A GBM tumors. Clinically, the effect of dexamethasone on survival was evaluated in 181 patients with isocitrate dehydrogenase (IDH) wild-type GBM treated with PD-(L)1 blockade, with adjustment for relevant prognostic factors.
Despite the inherent responsiveness of GL261 to immune checkpoint blockade, concurrent dexamethasone administration with anti-PD-1 therapy reduced survival in a dose-dependent manner. Concurrent dexamethasone also abrogated survival following anti-PD-1 the GBM.
Our preclinical and clinical data indicate that concurrent dexamethasone therapy may be detrimental to immunotherapeutic approaches for patients with GBM.On May 8, 2020, the FDA granted accelerated approval to selpercatinib for (i) adult patients with metastatic RET fusion-positive non-small cell lung cancer (NSCLC), (ii) adult and pediatric patients ≥12 years of age with advanced or metastatic RET-mutant medullary thyroid cancer who require systemic therapy, and (iii) adult and pediatric patients ≥12 years of age with advanced or metastatic RET fusion-positive thyroid cancer who require systemic therapy and who are radioactive iodine refractory (if radioactive iodine is appropriate). Approval was granted on the basis of the clinically important effects on the overall response rate (ORR) with prolonged duration of responses observed in a multicenter, open-label, multicohort clinical trial (LIBRETTO-001, NCT03157128) in patients whose tumors had RET alterations. ORRs within the approved patient populations ranged from 64% [95% confidence interval (CI), 54-73] in prior platinum-treated RET fusion-positive NSCLC to 100% (95% CI, 63-100) in systemic therapy-naïve RET fusion-positive thyroid cancer, with the majority of responders across indications demonstrating responses of at least 6 months. The product label includes warnings and precautions for hepatotoxicity, hypertension, QT interval prolongation, hemorrhagic events, hypersensitivity, risk of impaired wound healing, and embryo-fetal toxicity. This is the first approval of a drug specifically for patients with RET alterations globally.The roles of chromatin remodelers and their underlying mechanisms of action in cancer remain unclear. Almorexant cell line In this study, SMARCB1, known initially as a bona fide tumor suppressor gene, was investigated in liver cancer. SMARCB1 was highly upregulated in liver cancer patients and was associated with poor prognosis. Loss- and gain-of-function studies in liver cells revealed that SMARCB1 loss led to reduced cell proliferation, wound healing capacity, and tumor growth in vivo. And although upregulated SMARCB1 appeared to contribute to SWItch/Sucrose Non-Fermentable (SWI/SNF) complex stability and integrity, it did not act using its known pathways antagonism with EZH2 or association between TP53 or AMPK. SMARCB1 knockdown induced a mild reduction in global H3K27 acetylation, and chromatin immunoprecipitation sequencing of SMARCB1 and acetylated histone H3K27 antibodies before and after SMARCB1 loss identified Nucleoporin210 (NUP210) as a critical target of SMARCB1, which bound its enhancer and changed H3K27Ac enrichment and downstream gene expression, particularly cholesterol homeostasis and xenobiotic metabolism. Notably, NUP210 was not only a putative tumor supporter involved in liver cancer but also acted as a key scaffold for SMARCB1 and P300 to chromatin. Furthermore, SMARCB1 deficiency conferred sensitivity to doxorubicin and P300 inhibitor in liver cancer cells. These findings provide insights into mechanisms underlying dysregulation of chromatin remodelers and show novel associations between nucleoporins and chromatin remodelers in cancer.Colorectal and lung cancers account for one-third of all cancer-related deaths worldwide. Previous studies suggested that metadherin (MTDH) is involved in the development of colorectal and lung cancers. However, how MTDH regulates the pathogenesis of these cancers remains largely unknown. Using genetically modified mouse models of spontaneous colorectal and lung cancers, we found that MTDH promotes cancer progression by facilitating Wnt activation and by inducing cytotoxic T-cell exhaustion, respectively. Moreover, we developed locked nucleic acid-modified (LNA) MTDH antisense oligonucleotides (ASO) that effectively and specifically suppress MTDH expression in vitro and in vivo. Treatments with MTDH ASOs in mouse models significantly attenuated progression and metastasis of colorectal, lung, and breast cancers. Our study opens a new avenue for developing therapies against colorectal and lung cancers by targeting MTDH using LNA-modified ASO. SIGNIFICANCE This study provides new insights into the mechanism of MTDH in promoting colorectal and lung cancers, as well as genetic and pharmacologic evidence supporting the development of MTDH-targeting therapeutics.Almorexant cell line
Top comments (0)