However, three major pollinator species responded differently to shading and covering. Significant pollen limitation reduced seed set in covered flowers, and shaded flowers produced fewer seeds. Pollen removal from the anthers was not influenced by shading or covering. Our study demonstrates the negative effects of covering on pollinator visits and seed production. It also elucidates the negative effects of shading on reproductive success in L. zollingeri, which depends on managed semi-natural conditions. Land management abandonment, which has increased shaded and covered conditions in artificial forest edge meadows and open forest floors, might promote a rapid reduction in the populations of such dwarf plants.Acellular tendon matrix is an ideal substitute for constructing tissue engineering ligaments, but using detergents causes damage to collagen and fibrin during the process of decellularization. In this study, fresh tendons were lyophilized and separated into fresh tendon fiber (FTF) bundles, and then the cellular components in FTF were removed to prepare acellular tendon fiber (ATF) without adding chemical detergent. H&E staining and DAPI fluorescence microscopy showed no nucleus and DNA residue. Compared with FTFs, the DNA content of ATFs was significantly lower without the collagen content change before and after decellularization. The microstructure of collagen fibrils in ATFs was intact under scanning electron microscopy (SEM), and the maximum tensile load and elastic modulus between FTFs and ATFs were not statistically different. The ATF bundles were cultured with SD rat tenocytes for 72 hr and cells attachment to fiber surfaces were observed under SEM. ATF bundles were then implanted into paraspinal muscles, and histological analysis showed fibroblast-like cells within the ATFs and was similar to the control group (fresh tendon autograft) in morphology. H&E staining showed that the number of lymphocytes and plasma cells in ATF was less than that in fresh tendon autograft. ATF bundles were twisted into linear fiber materials by hand, of which the maximum breaking strength was similar to silk with same diameter. These findings demonstrated that ATFs retain their original fibril structure and mechanical properties after decellularization by trypsin and pancreatic deoxyribonuclease without detergent. Lyophilized ATFs linear fiber material provides the possibility of preparing personalized ligament and other tissue engineering scaffolds.The cytokinins, which are N6 -substituted adenine derivatives, control key aspects of crop productivity. Cytokinin levels are controlled via biosynthesis by isopentenyl transferase (IPT), destruction by cytokinin oxidase/dehydrogenase (CKX), and inactivation via glucosylation by cytokinin glucosyl transferases (CGTs). While both yield components and tolerance to drought and related abiotic stressors have been positively addressed via manipulation of IPT and/or CKX expression, much less attention has been paid to the CGTs. As naming of the CGTs has been unclear, we suggest COGT, CNGT, CONGT and CNOGT to describe the O-, N- and dual function CGTs. As specific CGT mutants of both rice and arabidopsis showed impacts on yield components, we interrogated the wheat genome database, IWGSC RefSeq v1.0 & v2.0, to investigate wheat CGTs. Besides providing unambiguous names for the 53 wheat CGTs, we show their expression patterns in 70 developmental tissues and their response characteristics to various stress conditions by reviewing more than 1000 RNA-seq data sets. These revealed various patterns of responses and showed expression generally being more limited in reproductive tissues than in vegetative tissues. Multiple cis-regulatory elements are present in the 3 kb upstream of the start codons of the 53 CGTs. Elements associated with abscisic acid, light and methyl jasmonate are particularly over-represented, indicative of the responsiveness of CGTs to the environment. These data sets indicate that CGTs have potential value for wheat improvement and that these could be targeted in TILLING or gene editing wheat breeding programmes.
In this study, we aimed to explore whether COL1A2 and miR-1297 participated in the progression of diabetic nephropathy (DN) in vitro and classified the underlying mechanisms.
d-Glucose (30 mM; high glucose, HG)-stimulated HK-2 cells were used to mimic DN condition. RNA and non-coding RNA profiles were from Gene Expression Omnibus (GEO) database. EIDD-2801 research buy The interaction between miR-1297 and COL1A2 was measured by dual-luciferase reporter assay. Gene Set Enrichment Analysis (GSEA) method was conducted to analyse COL1A2-associated signalling pathways. The role of miR-1297/COL1A2 in biological behaviours of HG-induced HK-2 cells were analysed by cell counting kit-8 and apoptosis assays.
Bioinformatics analysis revealed that COL1A2 was up-regulated in DN tissues. We predicted and verified miR-1297 as the regulatory miRNA of COL1A2, and the expression of miR-1297 was decreased in DN tissues and HG-stimulated HK-2 cells. Overexpression of miR-1297 could promote cell proliferation and inhibit apoptosis to protect HK-2 cells from HG-induced damage. And knockdown of COL1A2 enhanced the protective effects of miR-1297 on HG-stimulated HK-2 cells. GSEA results revealed that several inflammatory pathways were enriched in COL1A2 high-expression group. Meanwhile, transfection of miR-1297 reduced the phosphorylation of NFκB and expression of three important pro-inflammatory genes including cytokine CCL5, adhesion molecules ICAM1 and VCAM1 via targeting COL1A2. These results suggested that miR-1297 protected HG-treated HK-2 cells probably through suppressing inflammation via targeting COL1A2.
This study sheds a light on the role miR-1297/COL1A2 in DN progression and provides a novel promising therapy strategy for suppressing DN progression.
This study sheds a light on the role miR-1297/COL1A2 in DN progression and provides a novel promising therapy strategy for suppressing DN progression.High color purity and color rendition of 2D luminescent materials have long been pursued for applications in low-dimensional lighting, display, biolabeling, and laser. However, the reported photoluminescence (PL) linewidth of most 2D luminescent materials is about dozens of meV. Herein, a brand-new luminescent system of 2D rare earth (RE) material EuOCl (1.1 nm) with ultra-narrow linewidth (1.2 meV) at room temperature is successfully synthesized via chemical vapor deposition (CVD). The linewidth of EuOCl flakes at room temperature is even narrower than most 2D luminescent materials and heterostructures detected at below 10 K. Impressively, the as-synthesized EuOCl flakes show abnormal temperature-dependent photoluminescent properties, which is absolutely different from the relatively stable 4f-4f transitions in RE owing to shielding from outer shell electrons. J-mixing effect has been successfully applied for this phenomenon. Undoubtedly, luminescent 2D EuOCl flakes will open new territory for the applications of 2D RE materials in the 2D luminescent areas, especially for the applications at room temperature.EIDD-2801 research buy
Top comments (0)