In this first article of our series, we'll lay the groundwork for building an intelligent e-commerce support chatbot using JavaScript technologies. Our chatbot will help customers get information about their orders without waiting for human support.
Technologies We'll Use
- LangChain.js – A framework for developing applications powered by language models
- Pinecone – A vector database for efficient similarity search
- React – For building our frontend user interface
- Node.js – For our backend server
- Database – We'll use MongoDB for storing our e-commerce data
Prerequisites
To follow along with this tutorial, you should have:
- Basic knowledge of JavaScript and Node.js
- Familiarity with React
- Node.js installed on your machine
- A code editor (VS Code recommended)
- npm or yarn for package management
Project Setup
Let's create our project structure:
mkdir ecommerce-chatbot
cd ecommerce-chatbot
mkdir backend frontend
Setting Up the Backend
First, let's initialize our backend:
cd backend
npm init -y
Now, let's install the required dependencies:
npm install @langchain/openai @langchain/pinecone @langchain/community @langchain/core express cors dotenv mongodb
Creating Our Basic Server
Let's create a simple Express server to get started:
// backend/server.js
const express = require('express');
const cors = require('cors');
require('dotenv').config();
const app = express();
const PORT = process.env.PORT || 5000;
// Middleware
app.use(cors());
app.use(express.json());
// Basic route
app.get('/api/health', (req, res) => {
res.json({ status: 'ok', message: 'E-commerce Chatbot API is running' });
});
// Start server
app.listen(PORT, () => {
console.log(`Server running on port ${PORT}`);
});
Setting Up Environment Variables
Create a .env
file in your backend directory:
PORT=5000
OPENAI_API_KEY=your_openai_api_key
PINECONE_API_KEY=your_pinecone_api_key
PINECONE_ENVIRONMENT=your_pinecone_environment
MONGODB_URI=your_mongodb_connection_string
Setting Up LangChain
Let's create a basic LangChain configuration:
// backend/langchain/config.js
const { OpenAI } = require('@langchain/openai');
const { PineconeStore } = require('@langchain/pinecone');
const { PineconeClient } = require('@pinecone-database/pinecone');
// Initialize LLM
const initLLM = () => {
return new OpenAI({
openAIApiKey: process.env.OPENAI_API_KEY,
temperature: 0.2,
modelName: 'gpt-3.5-turbo',
});
};
// Initialize Pinecone
const initPinecone = async () => {
const client = new PineconeClient();
await client.init({
apiKey: process.env.PINECONE_API_KEY,
environment: process.env.PINECONE_ENVIRONMENT,
});
return client;
};
module.exports = {
initLLM,
initPinecone,
};
Setting Up the Database Connection
// backend/database/connection.js
const { MongoClient } = require('mongodb');
let db = null;
async function connectToDatabase() {
if (db) return db;
try {
const client = new MongoClient(process.env.MONGODB_URI);
await client.connect();
console.log('Connected to MongoDB');
db = client.db('ecommerce');
return db;
} catch (error) {
console.error('Database connection error:', error);
process.exit(1);
}
}
module.exports = { connectToDatabase };
Setting Up the Frontend
Now, let's initialize our React frontend:
cd ../frontend
npx create-react-app .
Install additional packages for the frontend:
npm install axios styled-components react-icons
Project Architecture Overview
Frontend (React)
- Chat interface for user interaction
- API calls to backend
Backend (Node.js/Express)
- API endpoints for chat functionality
- Integration with LangChain.js
- Connection to MongoDB for order data
- Integration with Pinecone for vector search
Next Steps
In Part 2, we'll:
- Set up MongoDB with sample order data
- Create the data schema
- Implement database operations for retrieving order information
Running the Application
Start the backend:
cd backend
node server.js
Start the frontend:
cd frontend
npm start
🚀 Stay tuned for Part 2!
Top comments (0)