Here is a simplest Implementation of the binary search tree, with JavaScript classes.
⚠ The tree will be unbalanced when Input is incremental [ex - 1,2,3,4,5 ..... n
]
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null
}
}
class BinarySearchTree {
constructor() {
this.root = null;
}
// insert a new node in tree
insertNode(data) {
if (this.root === null) {
this.root = new Node(data);
return;
}
let currentChildren = this.root;
this.findNodeToInsert(data, currentChildren);
}
findNodeToInsert(data, parentNode) {
if (data > parentNode.data) {
if (parentNode.right) {
this.findNodeToInsert(data, parentNode.right);
return;
}
parentNode.right = new Node(data);
}
else if (data <= parentNode.data) {
if (parentNode.left) {
this.findNodeToInsert(data, parentNode.left);
return;
}
parentNode.left = new Node(data);
}
}
// search a node in tree
contains(data, currentNode = this.root) {
// using ? operator to safegurad when we hit the null node
if (!this.root) return null;
if (data === currentNode?.data) {
console.log('Contains', currentNode)
return currentNode;
}
if (data > currentNode?.data) {
this.contains(data, currentNode?.right);
} else if (data < currentNode?.data) {
this.contains(data, currentNode?.left)
} else {
console.log("Node dosen't contain to this tree");
return null;
}
}
// print binary tree
printTreeInOrder(currentNode = this.root) {
if (!this.root || !currentNode) return;
this.printTreeInOrder(currentNode?.left)
console.log(currentNode.data);
this.printTreeInOrder(currentNode?.right);
}
printTreePreOrder(currentNode = this.root) {
if (!this.root || !currentNode) return;
console.log(currentNode.data);
this.printTreeInOrder(currentNode?.left)
this.printTreeInOrder(currentNode?.right);
}
printTreePostOrder(currentNode = this.root) {
if (!this.root || !currentNode) return;
this.printTreeInOrder(currentNode?.left)
this.printTreeInOrder(currentNode?.right);
console.log(currentNode.data);
}
}
const Tree = new BinarySearchTree();
Tree.insertNode(2);
Tree.insertNode(5);
Tree.insertNode(10);
Tree.insertNode(10)
Tree.insertNode(20)
// search a node
Tree.contains(2);
console.log("Root",Tree.root);
console.log("Printing tree Inorder [Left, Root, Right]");
// 2,5,10,10,20
Tree.printTreeInOrder()
//@todo - test properly
console.log("Printing tree Preorder [Root, Left, Right]");
Tree.printTreePreOrder();
console.log("Printing tree Postorder [Left, Right, Root]");
Tree.printTreePostOrder();
Its a very simple implementation of the binary search tree. There can be some edge cases.
P.S. - I make my blog covers from - https://coverview.vercel.app/ [with customization]
👋
Top comments (0)