Wastewater treatment is the most serious problem in this upcoming era. A harmful effluent like organic dyes, heavy metals, acids from industries mixed in wastewater is deteriorating the environment. To get rid of these poisonous materials and to recycle wastewater for domestic purposes, there are many steps which included photocatalytic dye degradation. PVP assisted Mn-CdS nanoparticles was prepared by novel hydrothermal technique. The characteristic behavior of pure and PVP (1% and 2%) assisted Mn-CdS samples were studied by further analysis. The structural, optical, vibrational, morphological, chemical composition behavior of synthesized pristine and surfactant induced Mn-CdS nanoparticles were analyzed. UV-Vis spectra revealed the optical behavior of the prepared pure and PVP (1% and 2%) assisted Mn-CdS samples. The bandgap obtained was 2.2, 2.06 and 1.99 eV for pure Mn-CdS, 1% PVP-Mn-CdS and 2% PVP- Mn-CdS. The narrow bandgap is one of the advantage of the material. Mn-CdS, 1% PVP-(Mn-CdS) and 2% PVP- (Mn almost 98% of efficiency up to three cycles which confirmed the level of potential of the sample. 2% PVP-(Mn-CdS) sample would be promising candidate in wastewater treatment. It can be further utilized for removing dyes from wastewater in wastewater remediation process.Although pyrite bio-dissolution plays an important role in the processing of sulfide ores, the formation of passivation film inhibited the further dissolution of sulfide ores. In order to enhance the dissolution of sulfide ores, a novel method for destroying the passivation film using ozone was proposed and verified. The generated passivation film inhibiting pyrite dissolution in the presence of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans was studied. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicate that a passivation film mainly consisting of jarosite and polysulfide (Snn-/S0) might be formed during biotic stage, which can be eliminated with the introduction of ozone (2 g/min) in 30 min. Electrochemical results show that ozone significantly increased the electrochemical reactivity of passivated pyrite, further proving that ozone enhanced the dissolution of passivated pyrite through destroying the passivation layer. Hence, a bi-stage method for dissolution of sulfide ores can be proposed.The reaction mechanism of dichloromethane (CH2Cl2) oxidation on LaMnO3 catalyst was investigated using density functional theory calculations. The results showed that CH2Cl2 dechlorination proceeds via CH2Cl2 → CH2ClO → HCHO. The adsorbed Cl∗ and formaldehyde (HCHO) are identified as the important intermediates of CH2Cl2 dechlorination process. The dissociated Cl atoms prefer to adsorb on the surface Mn sites. Surface hydroxyl groups are not directly involved in the CH2Cl2 dechlorination process, but react with the adsorbed Cl∗ to form HCl. The energy barrier of HCl formation is lower than that of Cl2 formation, indicating that hydroxyl groups facilitate the removal of adsorbed Cl∗ species. Three possible pathways of HCHO oxidation with the assist of lattice oxygen, active oxygen atom and hydroxyl groups were investigated. HCHO catalytic oxidation contains four steps HCHO → CHO → CO → H2O desorption → CO/CO2 desorption. Compared with the HCHO oxidation by lattice oxygen and hydroxyl groups, HCHO oxidation assisted with activated oxygen atom is more thermodynamically favorable. BAY853934 A complete catalytic cycle was proposed to understand the preferable reaction pathway for CH2Cl2 oxidation on LaMnO3 catalyst. The catalytic cycle includes CH2Cl2 dechlorination, HCl formation and HCHO oxidation. The microkinetic analysis indicates that there are four steps controlling the reaction cycle CH2Cl2∗ + ∗ → CH2Cl∗ + Cl∗, CH2OCl∗ + Cl∗ → CH2O∗ + Cl∗, O2∗ + ∗ → 2O∗, and CHO2∗ + OH∗ → CO2 + H2O∗.Over the course of history, mining and metallurgical activities have influenced the socioeconomic development of human populations. However, these past and current activities can also lead to substantial environmental contamination by various metals. Here, we used an interdisciplinary approach (incorporating archaeology, mineralogy, environmental chemistry and ecotoxicology) to investigate the origin, fate and potential ecotoxicity of anomalous manganese (Mn) concentrations detected in the ancient mining district of Berthelange (medieval period, eastern France). Mineralogical investigations of slag samples showed that smelting temperature conditions in medieval bloomeries led to the production of slags mainly composed of Fe- and Mn-rich olivine, i.e., fayalites. Further mineralogical analyses of bulk soil and clay fractions allowed us to identify the presence of serpentine. This evidence of olivine weathering can account for the release of Mn from slags into the soil. In addition, chemical analyses of total and available (exchangeable and reducible) Mn concentrations in soil samples clearly showed the contribution of slags deposited 1000 years ago to soil contamination. A complementary ecotoxicity bioassay performed on soils from a slag heap using the land snail Cantareus aspersus confirmed that a significant fraction of the Mn detected in soils remains available for partitioning with the soil solution and transfer to soil organisms. Although no growth inhibition of snails was observed after 28 days of exposure, the animals accumulated quite elevated Mn concentrations in their tissues. Our study emphasizes the environmental availability and bioavailability of Mn from ancient metallurgical wastes to soil-dwelling invertebrates, i.e., snails, even one millennium after their deposition. Hence, as for more recent industrial sites, past mining ecosystems must be a cause of concern for the scientific community and public authorities.Two euryhaline rotifers, the temperate species Brachionus plicatilis and tropical species Brachionus rotundiformis, were used to investigate the effects of iron (FeSO4·7H2O), an essential trace metal, on reproductive patterns and lifetables, including the metabolism of lipid and reactive oxygen species (ROS). B. plicatilis was more sensitive to iron with regard to sexual reproduction. While iron had no significant effect on the population growth at 0-48 μg/mL, it caused a decrease in the resting egg production. B. plicatilis exposed to 6 and 12 μg/mL of iron showed an increase in the intracellular ROS levels and a decrease in the neutral lipid content in sexual organs, accompanied by downregulation of antioxidant components CuZnSOD and two cytochromes (CYP clan 2&3). These patterns suggested that iron-induced oxidative stress was not neutralized by its antioxidant defense system, thus negatively affecting the fecundity of fertilized mictic females. However, B. rotundiformis showed a dose-dependent increase in population growth with extended lifespan and positive sexual reproduction in response to 0-24 μg/mL iron.BAY853934
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)