You can keep reading here or jump to my blog to get the full experience, including the wonderful pink, blue and white palette.
Let's say we wanted to perform two operations on a tree:
- count the number of leaves
- transform it to a list
In this post we will perform both by employing three different strategies:
- recursive functions
- using the Foldable typeclass
- using the State Monad
The Tree Type
data Tree a
= Leaf a
| Node (Tree a) (Tree a)
instance showTree :: Show a => Show (Tree a) where
show (Leaf x) = "(Leaf " <> show x <> ")"
show (Node l r) = "(Node " <> show l <> " " <> show r <> ")"
exampleTree :: Tree Char
exampleTree =
Node
(Node (Leaf 'a') (Leaf 'b'))
(Leaf 'c')
main :: Effect Unit
main = do
logShow exampleTree
-- (Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c'))
Recursive Functions
PureScript is a purely functional programming language and Tree a
is a recursive type: recursive functions are a perfect fit.
countTreeRec :: forall a. Tree a -> Int
countTreeRec tree =
go 0 tree
where
go i (Leaf _) = i + 1
go i (Node l r) = go i l + go i r
toListRec :: forall a. Tree a -> List a
toListRec tree =
go Nil tree
where
go xs (Leaf x) = xs <> Cons x Nil
go xs (Node l r) = go xs l <> go xs r
main :: Effect Unit
main = do
logShow $ countTreeRec exampleTree
-- 3
logShow $ toListRec exampleTree
-- ('a' : 'b' : 'c' : Nil)
The functions do what they are supposed to do. However, their shape is really similar. The only differences between countTreeRec
and toListRec
are:
- the initial value passed to the
go
function (i.e.0
vsNil
) - the calculation in the base case of
go
(i.e.i + 1
vsxs <> Cons x Nil
) - the way the recursive case combines the result of the recursive calls (i.e.
+
vs<>
)
What's described above is exactly what the Foldable typeclass captures. Let's see how that looks in code.
Using the Foldable Typeclass
The Foldable typeclass captures the idea of "folding" a structure into another one.
instance foldableTree :: Foldable Tree where
-- foldMap :: forall a m. Monoid m => (a -> m) -> f a -> m
foldMap g (Leaf x) = g x
foldMap g (Node l r) = foldMap g l <> foldMap g r
foldr g = foldrDefault g
foldl g = foldlDefault g
countTreeFold :: forall a. Tree a -> Int
countTreeFold tree =
count
where Additive count = foldMap (\_ -> Additive 1) tree
toListFold :: forall a. Tree a -> List a
toListFold tree =
foldMap (\x -> Cons x Nil) tree
main :: Effect Unit
main = do
logShow $ countTreeFold exampleTree
-- 3
logShow $ toListFold exampleTree
-- ('a' : 'b' : 'c' : Nil)
In this case, we could have used foldr
or foldl
to achieve the same results. But foldMap
is a tad more elegant. The way it works is simple:
- It first runs each element of the tree through the function passed to it (i.e.
(\_ -> Additive 1)
vs(\x -> Cons x Nil)
. That function must transform each element of the tree into a Monoid - It combines all of the Monoids of the tree using the
<>
operator. Since<>
is implemented as+
forAdditive
and<>
is implemented asCons
forList
, everything works as before.
Try to compare countTreeFold
vs countTreeRec
and toListFold
vs toListRec
.
Using the State Monad
The foldable trick is totally cool. But why not go overkill implementing and using a State Monad?
newtype State s a = State (s -> Tuple a s)
runState :: forall s a. State s a -> s -> Tuple a s
runState (State s) a = s a
instance functorState :: Functor (State s) where
-- map :: forall a b. (a -> b) -> f a -> f b
map g f = State (\s -> let Tuple a s' = runState f s in Tuple (g a) s')
instance applyState :: Functor (State s) => Apply (State s) where
-- apply :: forall a b. f (a -> b) -> f a -> f b
apply fg f = State (\s -> let Tuple g s' = runState fg s
Tuple a s'' = runState f s' in Tuple (g a) s'')
instance applicativeState :: Apply (State s) => Applicative (State s) where
-- pure :: forall a. a -> f a
pure a = State (\s -> Tuple a s)
instance bindState :: Apply (State s) => Bind (State s) where
-- bind :: forall a b. m a -> (a -> m b) -> m b
bind m mg = State (\s -> let Tuple a s' = runState m s in runState (mg a) s')
addOne :: State Int Int
addOne = State (\s -> Tuple s (s+1))
countTreeState :: forall a. Tree a -> State Int (Tree Int)
countTreeState (Leaf _) = Leaf <$> addOne
countTreeState (Node l r) = Node <$> countTreeState l <*> countTreeState r
appendValue :: forall a. a -> State (List a) a
appendValue x = State (\s -> Tuple x (s <> Cons x Nil))
toListState :: forall a. Tree a -> State (List a) (Tree a)
toListState (Leaf x) = Leaf <$> appendValue x
toListState (Node l r) = Node <$> toListState l <*> toListState r
main :: Effect Unit
main = do
logShow $ snd $ runState (countTreeState exampleTree) 0
-- 3
logShow $ snd $ runState (toListState exampleTree) Nil
-- ('a' : 'b' : 'c' : Nil)
I'm gonna cover State
in a future post, so keep tuned!
The Whole Code
module Main where
import Prelude (class Applicative, class Apply, class Bind, class Functor, class Show, Unit, discard, show, ($), (+), (<$>),
(<*>), (<>))
import Effect (Effect)
import Effect.Console (logShow)
import Data.Foldable
import Data.List (List(..), foldMap)
import Data.Monoid.Additive (Additive(..))
import Data.Tuple (Tuple(..), snd)
data Tree a
= Leaf a
| Node (Tree a) (Tree a)
instance showTree :: Show a => Show (Tree a) where
show (Leaf x) = "(Leaf " <> show x <> ")"
show (Node l r) = "(Node " <> show l <> " " <> show r <> ")"
exampleTree :: Tree Char
exampleTree =
Node
(Node (Leaf 'a') (Leaf 'b'))
(Leaf 'c')
countTreeRec :: forall a. Tree a -> Int
countTreeRec tree =
go 0 tree
where
go i (Leaf _) = i + 1
go i (Node l r) = go i l + go i r
toListRec :: forall a. Tree a -> List a
toListRec tree =
go Nil tree
where
go xs (Leaf x) = xs <> Cons x Nil
go xs (Node l r) = go xs l <> go xs r
instance foldableTree :: Foldable Tree where
-- foldMap :: forall a m. Monoid m => (a -> m) -> f a -> m
foldMap g (Leaf x) = g x
foldMap g (Node l r) = foldMap g l <> foldMap g r
foldr g = foldrDefault g
foldl g = foldlDefault g
countTreeFold :: forall a. Tree a -> Int
countTreeFold tree =
count
where Additive count = foldMap (\_ -> Additive 1) tree
toListFold :: forall a. Tree a -> List a
toListFold tree =
foldMap (\x -> Cons x Nil) tree
newtype State s a = State (s -> Tuple a s)
runState :: forall s a. State s a -> s -> Tuple a s
runState (State s) a = s a
instance functorState :: Functor (State s) where
-- map :: forall a b. (a -> b) -> f a -> f b
map g f = State (\s -> let Tuple a s' = runState f s in Tuple (g a) s')
instance applyState :: Functor (State s) => Apply (State s) where
-- apply :: forall a b. f (a -> b) -> f a -> f b
apply fg f = State (\s -> let Tuple g s' = runState fg s
Tuple a s'' = runState f s' in Tuple (g a) s'')
instance applicativeState :: Apply (State s) => Applicative (State s) where
-- pure :: forall a. a -> f a
pure a = State (\s -> Tuple a s)
instance bindState :: Apply (State s) => Bind (State s) where
-- bind :: forall a b. m a -> (a -> m b) -> m b
bind m mg = State (\s -> let Tuple a s' = runState m s in runState (mg a) s')
addOne :: State Int Int
addOne = State (\s -> Tuple s (s+1))
countTreeState :: forall a. Tree a -> State Int (Tree Int)
countTreeState (Leaf _) = Leaf <$> addOne
countTreeState (Node l r) = Node <$> countTreeState l <*> countTreeState r
appendValue :: forall a. a -> State (List a) a
appendValue x = State (\s -> Tuple x (s <> Cons x Nil))
toListState :: forall a. Tree a -> State (List a) (Tree a)
toListState (Leaf x) = Leaf <$> appendValue x
toListState (Node l r) = Node <$> toListState l <*> toListState r
main :: Effect Unit
main = do
logShow exampleTree
-- (Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c'))
logShow $ countTreeRec exampleTree
-- 3
logShow $ toListRec exampleTree
-- ('a' : 'b' : 'c' : Nil)
logShow $ countTreeFold exampleTree
-- 3
logShow $ toListFold exampleTree
-- ('a' : 'b' : 'c' : Nil)
logShow $ snd $ runState (countTreeState exampleTree) 0
-- 3
logShow $ snd $ runState (toListState exampleTree) Nil
-- ('a' : 'b' : 'c' : Nil)
Get the latest content via email from me personally. Reply with your thoughts. Let's learn from each other. Subscribe to my PinkLetter!
Top comments (0)