Imagine running ChatGPT-style AI entirely on your own hardware—no cloud lock-in, no API limits, no privacy risks. Just pure, high-performance AI under your control.
Big Tech doesn’t want you to know this, but you don’t need OpenAI or cloud GPUs to build your own AI chatbot. With Kubernetes (K3s), NVIDIA GPUs, and Ollama, you can deploy a private, lightning-fast ChatGPT alternative in under 30 minutes.
This guide is perfect for:
✅ Developers & enterprises wanting full control over their AI
✅ Security-conscious teams keeping AI inside their private networks
✅ Tinkerers & AI enthusiasts looking to run custom LLMs on bare metal
Best of all? Your AI is now 10x faster—thanks to GPU acceleration—compared to CPU-bound inferencing. Let’s dive in! 🚀
Prerequisites ✅
You’ll need:
1️⃣ NVIDIA GPU (Required) – RTX 3090+, A100, or similar (Pascal+ for CUDA support)
2️⃣ NVIDIA Drivers & NVIDIA-SMI – Verify installation:
nvidia-smi
3️⃣ Linux Distribution – Ubuntu 20.04+, Debian, Fedora
4️⃣ Docker & Kubernetes (K3s) – Installed on your machine
💡 Not sure if your GPU is supported? Run:
nvidia-smi | grep "CUDA Version"
Step 1: Install Kubernetes (K3s) 🏗️
We’re using K3s, a lightweight Kubernetes distribution that’s perfect for rapid deployments.
Installation Steps:
- Install K3s:
curl -sfL https://get.k3s.io | sh -
- Verify Installation:
sudo k3s kubectl get node
Step 2: Deploy Ollama as a StatefulSet 🧠
Why a StatefulSet?
- AI models require persistent storage (so you don’t redownload them on every restart).
- StatefulSets ensure model files stay intact across pod restarts.
Save the following as ollama-statefulset.yaml
:
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: ollama
spec:
serviceName: "ollama"
replicas: 1
selector:
matchLabels:
app: ollama
template:
metadata:
labels:
app: ollama
spec:
containers:
- name: ollama
image: ollama/ollama:latest
ports:
- containerPort: 11434
env:
- name: NVIDIA_VISIBLE_DEVICES
value: all
- name: NVIDIA_DRIVER_CAPABILITIES
value: compute,utility
- name: OLLAMA_DEBUG
value: "1"
volumeMounts:
- name: models
mountPath: /root/.ollama
resources:
limits:
nvidia.com/gpu: 1
volumeClaimTemplates:
- metadata:
name: models
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: local-path
resources:
requests:
storage: 10Gi
Deploy the StatefulSet:
kubectl apply -f ollama-statefulset.yaml
Step 3: Deploy Open WebUI 🌐
Create the Deployment
Save the following as open-webui-deployment.yaml
:
apiVersion: apps/v1
kind: Deployment
metadata:
name: open-webui
spec:
replicas: 1
selector:
matchLabels:
app: open-webui
template:
metadata:
labels:
app: open-webui
spec:
containers:
- name: open-webui
image: ghcr.io/open-webui/open-webui:latest
ports:
- containerPort: 3000
env:
- name: OLLAMA_BASE_URL
value: "http://ollama"
Deploy Open WebUI:
kubectl apply -f open-webui-deployment.yaml
Step 4: Access Your Private ChatGPT 🚀
Use port forwarding to access Open WebUI:
kubectl port-forward svc/open-webui-service 8080:80
Now open your browser and visit:
http://localhost:8080
Next Steps: Real-World Scaling & Optimizations 🏆
1️⃣ Serve via DNS & Load Balancer
- Instead of using
kubectl port-forward
, expose your chatbot via Ingress + LoadBalancer. - Add TLS encryption via Cert-Manager + Let’s Encrypt.
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: chatgpt-ingress
annotations:
cert-manager.io/cluster-issuer: "letsencrypt-prod"
spec:
rules:
- host: chatgpt.yourdomain.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: open-webui-service
port:
number: 80
tls:
- hosts:
- chatgpt.yourdomain.com
secretName: chatgpt-tls
2️⃣ Optimize GPU Utilization
- Use NVIDIA MPS (Multi-Process Service) to split GPU resources across multiple models dynamically.
- Deploy multiple AI models in parallel (e.g., LLaMA + Mistral) by configuring model-specific
resourceRequests
.
3️⃣ CI/CD Automation for Model Updates
- Automate deployment with ArgoCD or GitHub Actions for rolling AI model updates.
- Use image versioning tags (e.g.,
ollama/ollama:1.2.3
) to avoid accidental updates breaking your chatbot.
4️⃣ Performance Monitoring (GPU Metrics & AI Response Times)
- Integrate Prometheus + Grafana to track: ✅ GPU memory usage ✅ Inference time per request ✅ Active model sessions
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: ollama-monitor
labels:
release: prometheus
spec:
selector:
matchLabels:
app: ollama
endpoints:
- port: metrics
interval: 15s
🎯 Final Thoughts
You’ve just built your own private, GPU-powered ChatGPT using Kubernetes, Ollama, and Open WebUI. But this is just the beginning!
🔹 Next Challenges:
1️⃣ Deploy multiple AI models (LLaMA + Mistral) with GPU partitioning.
2️⃣ Add user authentication (OAuth2 or Keycloak).
3️⃣ Fine-tune AI models on your own domain-specific dataset.
💬 What’s your next AI project? Drop a comment below and let’s build something epic together! 🚀
Top comments (0)