DEV Community

Bach Rich
Bach Rich

Posted on

High-temperature cost transfer throughout Nd0.25Sr0.75FeO3-δ: the actual effect of various factors.

We formulate the decomposition as a non-convex optimization problem and solve it using gradient descent algorithms with adaptive step size. Along with the hierarchy, our method aims to capture the heterogeneity of the set of common patterns across individuals. We first validate our model through simulated experiments. We then demonstrate the effectiveness of the developed method on two different real-world datasets by showing that multi-scale hierarchical SCPs are reproducible between sub-samples and are more reproducible as compared to single scale patterns. We also compare our method with an existing hierarchical community detection approach.Optical Coherence Tomography Angiography (OCTA) is a non-invasive imaging technique that has been increasingly used to image the retinal vasculature at capillary level resolution. However, automated segmentation of retinal vessels in OCTA has been under-studied due to various challenges such as low capillary visibility and high vessel complexity, despite its significance in understanding many vision-related diseases. In addition, there is no publicly available OCTA dataset with manually graded vessels for training and validation of segmentation algorithms. To address these issues, for the first time in the field of retinal image analysis we construct a dedicated Retinal OCTA SEgmentation dataset (ROSE), which consists of 229 OCTA images with vessel annotations at either centerline-level or pixel level. This dataset with the source code has been released for public access to assist researchers in the community in undertaking research in related topics. Secondly, we introduce a novel split-based coarse-to-fine vessel segmentation network for OCTA images (OCTA-Net), with the ability to detect thick and thin vessels separately. In the OCTA-Net, a split-based coarse segmentation module is first utilized to produce a preliminary confidence map of vessels, and a split-based refined segmentation module is then used to optimize the shape/contour of the retinal microvasculature. We perform a thorough evaluation of the state-of-the-art vessel segmentation models and our OCTA-Net on the constructed ROSE dataset. The experimental results demonstrate that our OCTA-Net yields better vessel segmentation performance in OCTA than both traditional and other deep learning methods. In addition, we provide a fractal dimension analysis on the segmented microvasculature, and the statistical analysis demonstrates significant differences between the healthy control and Alzheimer's Disease group. This consolidates that the analysis of retinal microvasculature may offer a new scheme to study various neurodegenerative diseases.Cell or nucleus detection is a fundamental task in microscopy image analysis and has recently achieved state-of-the-art performance by using deep neural networks. However, training supervised deep models such as convolutional neural networks (CNNs) usually requires sufficient annotated image data, which is prohibitively expensive or unavailable in some applications. Additionally, when applying a CNN to new datasets, it is common to annotate individual cells/nuclei in those target datasets for model re-learning, leading to inefficient and low-throughput image analysis. To tackle these problems, we present a bidirectional, adversarial domain adaptation method for nucleus detection on cross-modality microscopy image data. Specifically, the method learns a deep regression model for individual nucleus detection with both source-to-target and target-to-source image translation. In addition, we explicitly extend this unsupervised domain adaptation method to a semi-supervised learning situation and further boost the nucleus detection performance. We evaluate the proposed method on three cross-modality microscopy image datasets, which cover a wide variety of microscopy imaging protocols or modalities, and obtain a significant improvement in nucleus detection compared to reference baseline approaches. In addition, our semi-supervised method is very competitive with recent fully supervised learning models trained with all real target training labels.With the development of neuroimaging techniques, a growing amount of multi-modal brain imaging data are collected, facilitating comprehensive study of the brain. In this paper, we jointly analyzed functional magnetic resonance imaging (fMRI) collected under different paradigms in order to understand cognitive behaviors of an individual. To this end, we proposed a novel multi-view learning algorithm called structure-enforced collaborative regression (SCoRe) to extract co-expressed discriminative brain regions under the guidance of anatomical structure of the brain. An advantage of SCoRe over its predecessor collaborative regression (CoRe) lies in its incorporation of group structures in the brain imaging data, which makes the model biologically more meaningful. Results from real data analysis has confirmed that by incorporating prior knowledge of brain structure, SCoRe can deliver better prediction performance and is less sensitive to hyper-parameters than CoRe. After validation with simulation experiments, we applied SCoRe to fMRI data collected from the Philadelphia Neurodevelopmental Cohort and adopted the scores from the wide range achievement test (WRAT) to evaluate an individual's cognitive skills. We located 14 relevant brain regions that can efficiently predict WRAT scores and these brain regions were further confirmed by other independent studies.We consider the problem of abnormality localization for clinical applications. While deep learning has driven much recent progress in medical imaging, many clinical challenges are not fully addressed, limiting its broader usage. EX 527 chemical structure While recent methods report high diagnostic accuracies, physicians have concerns trusting these algorithm results for diagnostic decision-making purposes because of a general lack of algorithm decision reasoning and interpretability. One potential way to address this problem is to further train these models to localize abnormalities in addition to just classifying them. However, doing this accurately will require a large amount of disease localization annotations by clinical experts, a task that is prohibitively expensive to accomplish for most applications. In this work, we take a step towards addressing these issues by means of a new attention-driven weakly supervised algorithm comprising a hierarchical attention mining framework that unifies activation- and gradient-based visual attention in a holistic manner.EX 527 chemical structure

Top comments (0)