Also examined in this review are the crucial impacts that water characteristics have on photocatalysts and their interaction with bacteria. Accordingly, strategies to address the challenge of water characteristics on photocatalytic disinfection are explored one, to modify the semiconductor conduction band to generate long-lifetime reactive species; two, to improve the interaction between bacteria and photocatalysts.Estrogenically active compounds (EACs) in surface waters can disrupt the endocrine system of biota, raising concern for aquatic species. Concentrations of EACs are generally higher in effluent-dominated aquatic systems, such as California's Santa Ana River (SAR). Addressing estrogenicity of effluent-dominated waters is increasingly important due to both increasing urbanization and climate change. To this end, water samples were collected from multiple sites downstream of wastewater treatment plants (WWTPs) and intermittent points along the SAR during 2018-2019 and cell-based bioassays were used to determine estrogen receptor activity. During baseflow conditions, the highest estradiol equivalencies (EEQs) from all SAR water between summer (August and September) and fall (November) sampling events in 2018 were from Yorba Linda (EEQ = 1.36 ± 0.38 ng/L) and Prado (1.14 ± 0.13 ng/L), respectively. Water extracts in January 2019 following a major rainfall generally had higher EEQs with the highest EEQ of 10.0 ± 0.69 ng/L observed at Yorba Linda. During low flow conditions in November 2018, male Japanese medaka (Oryzias latipes) fish were exposed to SAR water to compare to cell bioassay responses and targeted analytical chemistry for 5 steroidal estrogens. Chemical-based EEQ correlations with in vitro EEQs were statistically significant. However, vitellogenin (vtg) mRNA expression in the livers of medaka exposed to SAR water was not significantly different compared to controls. These results indicate that seasonal variation and surface water runoff events influence estrogenic activity in the SAR and may induce estrogenic effects to native fish populations in wastewater-dominated streams in general.We conducted an emission measurement campaign as a part of a multiyear cookstove intervention trial in two rural locations in northern and southern India. 253 uncontrolled cooking tests measured emissions in control and intervention households during three ~3-month-long measurement periods in each location. We measured pollutants including fine particulate matter (PM2.5), organic and elemental carbon (OC, EC), black carbon (BC) and carbon monoxide (CO) from stoves ranging from traditional solid fuel (TSF) to improved biomass stoves (rocket, gasifier) to liquefied petroleum gas (LPG) models. TSF stoves showed substantial variability in pollutant emission factors (EFs; g kg-1 wood) and optical properties across measurement periods. Multilinear regression modeling found that measurement period, fuel properties, relative humidity, and cooking duration are significant predictors of TSF EFs. A rocket stove showed moderate reductions relative to TSF. LPG stoves had the lowest pollutant EFs, with mean PM2.5 and CO EFs (g MJdelivered-1) >90% lower than biomass stoves. However, in-home EFs of LPG were substantially higher than lab EFs, likely influenced by non-ideal combustion performance, emissions from food and possible influence from other combustion sources. In-home emission measurements may depict the actual exposure benefits associated with dissemination of LPG stoves in real world interventions.We evaluate the impacts of different nutrient management strategies on the potential for co-managing estrogens and nutrients in environmental waters of the Potomac watershed of the Chesapeake Bay. These potential co-management approaches represent agricultural and urban runoff, wastewater treatment plant effluent, and combined sewer overflow replacements. Twelve estrogenic compounds and their metabolites were analysed by gas chromatography-mass spectrometry. Estrogenic activity (E2Eq) was measured by in vitro bioassay. We detected estrone E1 (0.05-6.97 ng L-1) and estriol E3 (below detection-8.13 ng L-1) and one conjugated estrogen (estrone-3-sulfate E1-3S; below detection-8.13 ng L-1). E1 was widely distributed and positively correlated with E2Eq, water temperature, and dissolved organic carbon (DOC). Among nonpoint sources, E2Eq, and concentrations of E1, soluble reactive phosphorus (SRP) and total dissolved nitrogen (TDN) decreased by 51-61%, 77-82%, 62-64%, 4-16% in restored urban and agricultural streams with best management practices (BMPs) relative to unrestored streams without BMPs. In a wastewater treatment plant (Blue Plains WWTP), >94% of E1, E1-3S, E3, E2Eq and TDN were removed while SRP increased by 305% during nitrification/denitrification as a part of advanced wastewater treatment. Consequently, E1 and TDN concentrations in WWTP effluents were comparable or even lower than those observed in the receiving stream or river waters, and the effects of wastewater discharges on downstream E1 and TDN concentrations were minor. Highest E2Eq value and concentrations of E1, E3, and TDN were detected in combined sewer overflow (CSO). This study suggests that WWTP upgrades with biological nutrient removal, CSO management, and certain agricultural and urban BMPs for nutrient controls have the potential to remove estrogens from point and nonpoint sources along with other contaminants in streams and rivers.Resource and environmental elements as controlling factors for ecologic and socio-economic are crucial to seek new ideas and paths for development and prosperity. Uprosertib In this study, environmentally-extended input-output analysis and ecological network analysis were combined to develop three ecological networks including energy ecological network, water ecological network, and carbon ecological network for searching the complex relationships among different departments for water utilization, energy consumption, and carbon emissions under considering China as a superorganism with various complex metabolic processes and the most fundamental metabolic materials. The embodied ecological elements intensity, the indirect consumption and emissions, the embodied material flows, the ecological relationships, and the dependence intensities among sectors was obtained through transforming the monetary input-output data to physical data from 2007, 2012, and 2017. The results show that the Energy Ecological Network and Water Ecological Network were in a relatively stable state with a mutualism index greater than 1, and the relationship among different sectors in the CO2 Ecological Network needs to be further adjusted.Uprosertib
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)