Hematite is the absorbing mineral component of dust aerosols in the shortwave spectral region. However, dust shortwave absorption related to hematite suffers from significant uncertainties. In this study, we evaluated available hematite complex refractive index data in the literature on determining the dust effective refractive index at wavelengths ranging from 0.2 to 1.0 µm using rigorous T-matrix methods. Both spherical and super-spheroidal dust with hematite inclusions were examined to compute the dust optical properties and associated effective refractive indices. We found that the imaginary part of the effective refractive index retrieved from all available hematite complex refractive index data is larger than the measured effective values from Di Biagio et al. [Atmos. Chem. Phys.19, 15503, (2019)10.5194/acp-19-15503-2019]. The result obtained using the hematite refractive index from Hsu and Matijevic [Appl. Opt.241623 (1985)10.1364/AO.24.001623] is closest to but approximately two times larger than Di Biagio et al. [Atmos. GSK2256098 ic50 Chem. Phys.19, 15503, (2019)10.5194/acp-19-15503-2019]. Our results emphasize the importance of accurate measurements of mineral refractive indices to clarify the dust absorption enigma.This paper reports on the generation of a 100 MHz repetition rate, 1.7 mW average power and femtosecond deep-ultraviolet (DUV) 243 nm laser source. The infra-red output of a broadband Titanium-Sapphire (TiSa) laser containing 729 nm light is mixed with its second harmonic in a β-barium borate (BBO) crystal. By manipulating the group delay dispersion (GDD), we customize the spectral shape of TiSa resonator to improve conversion efficiency. This DUV laser is employed for direct frequency comb spectroscopy of hydrogen.We theoretically investigate the photocurrents injected in gapped graphene by the orthogonally polarized two-color laser field. Depending on the relative phase, the photocurrents can be coherently controlled by deforming the electron trajectory in the reciprocal space. Under the same field strength, the peak photocurrent in the orthogonally polarized two-color field is about 20 times larger than that for linearly polarized light, and about 3.6 times for elliptically polarized light. The enhancement of the photocurrent can be attributed to an obvious asymmetric distribution of the real population in the reciprocal space, which is sensitive to the waveform of the laser field and related to the quantum interference between the electron trajectories. Our work provides a noncontact method to effectively enhance the injected current in graphene.In this paper, continuous position control of plasmonic phase singularities on a metal-air interface is achieved based on the misaligned coupling between the optical axis of vortex beam and nano ring plasmonic lens. The formula of surface plasmon polaritons field distribution in this case is derived. The offset distance and direction between the optical axis of the vortex beam and the center of the nano ring is used to control the distance and the angular distribution of the phase singularities in nanoscale, respectively. This can promote the accurate positioning of phase singularities in practical applications and provide a deeper understanding of the misaligned coupling between vortex beams and nano ring plasmonic lens.We propose a nanoplasmonic interferometric biosensor, which exploits the selective excitation of multipolar plasmonic modes in a nanoslit to provide a novel scheme for highly-sensitive biosensing. In this design, two counter-propagating surface plasmon polaritons interfere at the location of the nanoslit, selectively exciting the dipolar and quadrupolar modes of the structure depending on the phase relationship induced by the analyte. The contrasting radiation patterns produced by these modes result in large changes in the angular distribution of the transmitted light that depends on the analyte concentration. The resultant far-field is numerically modeled and the sensing performance of the structure is assessed, resulting in maximum bulk and surface sensitivities of SB = 1.12 × 105 deg/RIU and SS = 302 deg/RIU, respectively, and a bulk-sensing resolution of the order of 10-8 RIU. The design allows ample control over the trade-off between operating range and resolution through the slit's width, making this platform suitable for a broad range of sensing requirements.Perfect vortex beam (PVB), whose ring radius is independent of its topological charge, play an important role in optical trapping and optical communication. Here, we experimentally demonstrate the reconfigurable double-ring PVB (DR-PVB) generation with independent manipulations of the amplitude, the radius, the width, and the topological charge for each ring. Based on complex amplitude modulation (CAM) with a phase-only spatial light modulator (SLM), we successfully verify the proposed DR-PVB generation scheme via the computer-generated hologram. Furthermore, we carry out a quantitative characterization for the generated DR-PVB, in terms of both the generation quality and the generation efficiency. The correlation coefficients of various reconfigurable DR-PVBs are above 0.8, together with the highest generation efficiency of 44%. We believe that, the proposed generation scheme of reconfigurable DR-PVB is desired for applications in both optical tweezers and orbital angular momentum (OAM) multiplexing.In this study, we demonstrate on-chip terahertz absorption spectroscopy using dielectric waveguide structures. The structures' evanescent fields interact with the sample material surrounding the waveguide, enabling the absorption signature of the material to be captured. The ability of fabricated terahertz dielectric waveguide structures, based on the newly developed silicon-BCB-quartz platform, to capture the fingerprint of α-lactose powder (as an example material) at 532 GHz is examined. Enhancement of the spectroscopy sensitivity through techniques such as tapering the waveguide, confining the field in a slot dielectric waveguide, and increasing the interaction length using a spiral-shaped waveguide are investigated experimentally. The proposed on-chip spectroscopy structures outperform conventional and state-of-the-art approaches in terms of sensitivity and compactness.GSK2256098 ic50
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)