AbstractHuman language is combinatorial phonemes are grouped into syllables, syllables are grouped into words, and so on. The capacity for combinatorial processing is present, in different degrees, in some mammals and birds. We used vibrational insects, Enchenopa treehoppers, to test the hypothesis of basic combinatorial processing against two competing hypotheses beginning rule (where the early signal portions play a stronger role in acceptability) and no ordering rule (where the order of signal elements plays no role in signal acceptability). Enchenopa males use plant-borne vibrational signals that consist of a whine followed by pulses. We tested the above hypotheses with vibrational playback experiments in which we presented Enchenopa females with stimuli varying in signal element combinations. We monitored female responses to these playbacks with laser vibrometry. We found strong support for combinatorial processing in Enchenopa in brief, females preferred natural-combination signals regardless of the beginning element and discriminated against reverse-order signals or individual elements. Finding support for the combinatorial rule hypothesis in insects suggests that this capability represents a common solution to the problems presented by complex communication.AbstractAnticipatory changes in organismal responses, triggered by reliable environmental cues for future conditions, are key to species' persistence in temporally variable environments. Such responses were tested by measuring the physiological performance of a tropical high-shore oyster in tandem with the temporal predictability of environmental temperature. Heart rate of the oyster increased with environmental temperatures until body temperature reached ∼37°C, when a substantial depression occurred (∼60%) before recovery between ∼42° and 47°C, after which cardiac function collapsed. The sequential increase, depression, and recovery in cardiac performance aligned with temporal patterns in rock surface temperatures, where the risk of reaching temperatures close to the oysters' lethal limit accelerates if the rock heats up beyond ∼37°C, coinciding closely with the body temperature at which the oysters initiate metabolic depression. The increase in body temperature over a critical threshold serves as an early-warning cue to initiate anticipatory shifts in physiology and energy conservation before severe thermal stress occurs on the shore. Cross-correlating the onset of physiological mechanisms and temporal structures in environmental temperatures, therefore, reveals the potential role of reliable real-time environmental cues for future conditions in driving the evolution of anticipatory responses.AbstractEcological differentiation between lineages is widely considered to be an important driver of speciation, but support for this hypothesis is mainly derived from the detailed study of a select set of model species pairs. Lusutrombopag manufacturer Mounting evidence from nonmodel taxa, meanwhile, suggests that speciation often occurs with minimal differentiation in ecology or ecomorphology, calling into question the true contribution of divergent adaptation to species richness in nature. To better understand divergent ecological adaptation and its role in speciation generally, researchers require a comparative approach that can distinguish its signature from alternative processes, such as drift and parallel selection, in data sets containing many species pairs. Here we introduce new statistical models of divergent adaptation in the continuous traits of paired lineages. In these models, ecomorphological characters diverge as two lineages adapt toward alternative phenotypic optima following their departure from a common ancestor. The absolute distance between optima measures the extent of divergent selection and provides a basis for interpretation. We encode the models in the new R package diverge and extend them to allow the distance between optima to vary across continuous and categorical variables. We test model performance using simulation and demonstrate model application using published data sets of trait divergence in birds and mammals. Our framework provides the first explicit test for signatures of divergent selection in trait divergence data sets, and it will enable empiricists from a wide range of fields to better understand the dynamics of divergent adaptation and its prevalence in nature beyond just our best-studied model systems.AbstractBody mass-based links between predator and prey are fundamental to the architecture of food webs. These links determine who eats whom across trophic levels and strongly influence the population abundance, flow of energy, and stability properties of natural communities. Body mass links scale up to create predator-prey mass relationships across species, but the origin of these relationships is unclear. Here I show that predator-prey mass relationships are consistent with the idea that body mass evolves to maximize a dependable supply of resource uptake. I used a global database of ~2,100 predator-prey links and a mechanistic optimization model to correctly predict the slope of the predator-prey mass scaling relationships across species generally and for nine taxonomic subsets. The model also predicted cross-group variation in the heights of the body mass relationships, providing an integrated explanation for mass relationships and their variation across taxa. The results suggest that natural selection on body mass at the local scale is detectable in ecological organization at the macro scale.AbstractOrganisms living at high elevations generally grow and develop more slowly than those at lower elevations. Slow montane ontogeny is thought to be an evolved adaptation to harsh environments that improves juvenile quality via physiological trade-offs. However, slower montane ontogeny may also reflect proximate influences of harsh weather on parental care and offspring development. We experimentally heated and protected nests from rain to ameliorate harsh montane weather conditions for mountain blackeyes (Chlorocharis emiliae), a montane songbird living at approximately 3,200 m asl in Malaysian Borneo. This experiment was designed to test whether cold and wet montane conditions contribute to parental care and postnatal growth and development rates at high elevations. We found that parents increased provisioning and reduced time spent warming offspring, which grew faster and departed the nest earlier compared with offspring from unmanipulated nests. Earlier departure reduces time-dependent predation risk, benefitting parents and offspring.Lusutrombopag manufacturer
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)