DEV Community

Cover image for How to Build a Dual-LLM Chat Application with Next.js, Python, and WebSocket Streaming
John Owolabi Idogun
John Owolabi Idogun

Posted on • Originally published at johnowolabiidogun.dev

How to Build a Dual-LLM Chat Application with Next.js, Python, and WebSocket Streaming

Introduction

In the age of rapid AI advancement, software engineers are frequently tasked with building sophisticated chatbots. This article provides a practical guide to developing a real-time, response-streaming chatbot from scratch using transformer models, autoencoding (BERT family), and autoregressive (GPT family) techniques. We'll learn how to build a chatbot capable of contextual conversations, processing user text and image/PDF uploads for enhanced understanding. We'll utilize Python (aiohttp) and React (Next.js) to deliver a seamless, interactive experience. Let's dive in!

Prerequisite

No prior expertise is strictly necessary, but some foundation in AI, software engineering, Python coding, and frontend development with a framework like React, Svelte, Vue, or Angular will be beneficial. If you're new to aiohttp or Svelte, we highly suggest exploring this previous article series as a helpful primer. Don't worry if you're not an expert (I ain't).

To set up your project, first create a root folder genai-chatbot and then navigate into the backend subdirectory:

mkdir genai-chatbot && cd genai-chatbot && mkdir backend && cd backend
Enter fullscreen mode Exit fullscreen mode

In the backend directory, create a Python virtual environment and install dependencies from requirements.txt:

python3 -m venv virtualenv && source virtualenv/bin/activate && pip install -r requirements.txt
Enter fullscreen mode Exit fullscreen mode

Ensure you create a requirements.txt file in the backend directory with the following content:

aiohttp
aiodns 
transformers 
torch 
torch-vision
pymupdf
pytesseract
Enter fullscreen mode Exit fullscreen mode

For the frontend, navigate to the root directory (genai-chatbot) and use create-next-app to generate a React frontend with TypeScript:

cd ..
npx create-next-app@latest react-frontend --typescript --eslint --app
Enter fullscreen mode Exit fullscreen mode

Follow the prompts from create-next-app.

Tailwind CSS Setup Recommendation:

Please note that create-next-app might include an older version of Tailwind CSS by default. For the best experience, avoiding the default Tailwind CSS setup during the create-next-app configuration is recommended. Instead, follow the official Tailwind CSS Next.js installation guide to install the latest version, ensuring you install Tailwind CSS and related packages as devDependencies.

Source code

GitHub logo Sirneij / genai-chatbot

A streaming chatbot powered by Large Language Models

GenAI ChatBot

A full-stack chat application featuring autoregressive and masked language models with streaming responses and context-aware interactions.

Overview

  • Frontend: Next.js-based chat interface with real-time WebSocket streaming
  • Backend: Python (aiohttp) server handling LLMs and file processing

Quick Start

  1. Clone the repository and enter the directory:
git clone https://github.com/Sirneij/genai-chatbot.git
cd genai-chatbot
Enter fullscreen mode Exit fullscreen mode
  1. Start the backend server (in a new terminal):
cd backend
python -m venv virtualenv
source virtualenv/bin/activate  # On Windows, use: virtualenv\Scripts\activate
pip install -r requirements.txt
adev runserver main.py  # For development with auto-reload
# Or use: python main.py  # For production
Enter fullscreen mode Exit fullscreen mode
  1. Start the frontend app (in another terminal):
cd react-frontend
npm install
npm run dev
Enter fullscreen mode Exit fullscreen mode

The application will be available at http://localhost:3000

Features

  • Real-time streaming responses
  • Support for both autoregressive and masked LLMs
  • File upload support (PDFs/Images)
  • Rich text rendering:
    • Markdown support
    • Code syntax highlighting
    • KaTeX math expressions
    • Unicode emoji support
  • Dark mode and responsive design

Project Structure

Implementation

Step 1: Theory - Autoregressive vs Autoencoding models

Two primary approaches emerge within the transformer model architecture: autoregressive and autoencoding. Autoregressive models, like those using the decoder component of a transformer, predict the next word (token) in a sequence based solely on the preceding words (a strictly left-to-right approach). This sequential generation method is ideal for tasks like text generation and response streaming. In contrast, autoencoding models (also known as masked language models) leverage the encoder part of the transformer. They operate bidirectionally, considering both preceding and subsequent words in a sentence to understand the context and produce representations. Refer to Hugging Face's model summary for a detailed comparison. Pretraining methodology is a key differentiator: autoregressive models are pretrained to predict the next token, making them naturally suited for text generation, while autoencoding models excel at contextual understanding, making them strong for tasks like question answering based on documents.

In this project, we will practically explore the distinct text generation capabilities of both model types in real-time. We will use microsoft/Phi-3-mini-4k-instruct (autoregressive) and deepset/roberta-base-squad2 (autoencoding) for demonstration, acknowledging resource limitations and focusing on showcasing the core differences.

Step 2: Python asynchronous backend with aiohttp

We'll start with the project structure from Building and Rigorously Testing a WebSocket and HTTP Server. Populate src/app/__init__.py with the following code, noting the key adaptations for our chatbot:

import json
from weakref import WeakSet

from aiohttp import WSCloseCode, web
from aiohttp.web import Request, Response, WebSocketResponse

from src.utils.auto_chat_engine import (
    cleanup_auto_model,
    gpt_question_and_answer,
    prepare_auto_tokenizer_and_model,
)
from src.utils.chat_engine import (
    prepare_qa_tokenizer_and_model,
    squad_question_answering,
)
from src.utils.extract import extract_text_from_file
from src.utils.settings import base_settings

WEBSOCKETS = web.AppKey('websockets', WeakSet[WebSocketResponse])


async def start_background_tasks(app: web.Application) -> None:
    """Initialize application background tasks."""
    app[WEBSOCKETS] = WeakSet()
    await prepare_auto_tokenizer_and_model(base_settings.MODEL_NAME)
    await prepare_qa_tokenizer_and_model(base_settings.QA_MODEL_NAME)


async def cleanup_app(app: web.Application) -> None:
    """Cleanup WebSocket connections on shutdown."""
    # Cleanup models
    await cleanup_auto_model()
    # Close all WebSocket connections
    for websocket in set(app[WEBSOCKETS]):  # type: ignore
        await websocket.close(code=WSCloseCode.GOING_AWAY, message=b'Server shutdown')


async def extract_text(request: Request) -> Response:
    """Extract text from PDF and image files."""
    data = await request.post()
    files = data.getall('file')
    if not files:
        return web.json_response({'error': 'No files provided'}, status=400)

    extracted_text = []
    for file in files:
        if file.content_type not in ['application/pdf', 'image/jpeg', 'image/png']:
            return web.json_response({'error': 'Invalid file type'}, status=400)

        text = await extract_text_from_file(file.file, file.content_type)
        extracted_text.append(text)

    base_settings.context = '\n'.join(extracted_text)

    return web.json_response({'success': 'Text extracted successfully'})


async def chat_handler(request: Request) -> Response:
    """Handle WebSocket connections."""
    ws = WebSocketResponse()
    await ws.prepare(request)

    request.app[WEBSOCKETS].add(ws)

    async for msg in ws:
        if msg.type == web.WSMsgType.TEXT:
            try:
                data = json.loads(msg.data)
                question_type = data.get('type')
                question = data.get('question', '').strip()
                if not question:
                    await ws.send_str('Error: No question provided.')
                    continue

                if question_type == 'auto':
                    # Stream response token by token.
                    async for token in gpt_question_and_answer(question):
                        await ws.send_json({'answer': token})
                elif question_type == 'masked':
                    # Use squad question answering (non-streamed).
                    answer = await squad_question_answering(question)
                    await ws.send_json({'answer': answer})
                else:
                    await ws.send_str('Error: Unknown question type.')
            except Exception as e:
                await ws.send_str(f'Error processing message: {str(e)}')
        elif msg.type == web.WSMsgType.ERROR:
            request.app[WEBSOCKETS].remove(ws)
            break

    request.app[WEBSOCKETS].remove(ws)

    return ws


def init_app() -> web.Application:
    """Initialize the application."""
    app = web.Application()

    # Add routes
    app.router.add_post('/api/extract', extract_text)
    app.router.add_get('/chat', chat_handler)

    # Add startup/cleanup handlers
    app.on_startup.append(start_background_tasks)
    app.on_shutdown.append(cleanup_app)

    return app
Enter fullscreen mode Exit fullscreen mode

This __init__.py file builds upon the structure from the recommended series. The key differences for our chatbot are:

  1. start_background_tasks (on startup) loads AI models, and cleanup_app (on shutdown) unloads them, improving resource handling.
  2. The extract_text handler accepts and processes multiple uploaded files to create a combined context.
  3. We use direct aiohttp WebSocket APIs in chat_handler. We support auto and masked types representing the use of autogenerative and masked language models respectively.

Next, let's delve into the files within the src/utils directory, starting with settings.py.

import logging

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S',
)

logger = logging.getLogger(__name__)


class Settings:
    logger = logger
    SYSTEM_PROMPT = 'You are an expert Q&A assistant. Provide accurate answers based on the context.'
    context = None
    MODEL_NAME = 'microsoft/Phi-3-mini-4k-instruct'
    QA_MODEL_NAME = 'deepset/roberta-base-squad2'


base_settings = Settings()
Enter fullscreen mode Exit fullscreen mode

The settings.py file primarily houses our logger configuration and defines several important constants used in the application, including the system prompt, the default language model (MODEL_NAME), and the question answering model (QA_MODEL_NAME).

Let's examine base.py next:

import torch


def get_device() -> tuple[torch.device, str]:
    if torch.cuda.is_available():
        return torch.device('cuda'), 'CUDA (NVIDIA GPU)'
    elif torch.backends.mps.is_available():
        return torch.device('mps'), 'MPS (Apple Metal)'
    else:
        return torch.device('cpu'), 'CPU'


async def get_stopping_strings(type: str, question: str, context: str | None = None) -> tuple[str, list[str]]:
    """Get stopping strings based on the question type."""
    ctx = f'\nUse this as the base Context: {context}\n' if context else ''
    STOPPING_STRINGS = {
        'exNormal': {
            'prompt': f'Answer the question, succinctly, using markdown formatting and katex for math.{ctx}. Do not use unicodes, if you must, use \\ such as \\u1F60A for smile.\nAfter providing your complete answer, you must conclude your response with \n§\n as the final line, with no text following it. \n\nQuestion: {question}\n\nAnswer:',
            'end': ['§', '\n§', '§\n', ' §', '\n§\n'],
        },
    }

    return STOPPING_STRINGS[type]['prompt'], STOPPING_STRINGS[type]['end']
Enter fullscreen mode Exit fullscreen mode

get_device intelligently detects the available hardware and returns the appropriate PyTorch device (CUDA GPU, Apple Metal (MPS), or CPU) along with a descriptive string. get_stopping_strings plays a crucial role in prompt construction for the autoregressive model. It dynamically generates a prompt and a list of stopping strings based on the question type and optional context. The prompt instructs the model to provide a concise answer using Markdown formatting and KaTeX for mathematical expressions. A key challenge with autoregressive models is their tendency to generate repetitive text. To mitigate this, the prompt explicitly instructs the model to conclude its response with the "§" symbol, an uncommon character chosen to signal the end of the answer. The application then programmatically halts text generation upon encountering this symbol. While using the model's native end-of-sequence token would be ideal, I had no luck with it.

The auto_chat_engine.py file is the central component responsible for generating text using the configured language model. It orchestrates the model's loading, manages the text generation process, and handles device-specific optimizations.

import asyncio

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast

from src.utils.base import get_device, get_stopping_strings
from src.utils.settings import base_settings

TOKENIZER, MODEL = None, None


async def prepare_auto_tokenizer_and_model(model_name: str) -> None:
    """
    Prepare and load the tokenizer and model with hardware-specific optimizations.

    Args:
        model_name (str): The name of the model to load.

    Returns:
        tuple: The loaded tokenizer and model.
    """

    global TOKENIZER, MODEL

    if TOKENIZER is not None and MODEL is not None:
        return

    device, _ = get_device()

    # Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', truncation_side='left', use_fast=True)
    tokenizer.pad_token = tokenizer.eos_token

    TOKENIZER = tokenizer

    # Model-specific settings
    load_kwargs = {}
    if 'phi-3' in model_name.lower():
        load_kwargs['trust_remote_code'] = True
        load_kwargs['attn_implementation'] = 'eager'  # No CUDA, so use eager mode
    elif 'starcoder' in model_name.lower():
        load_kwargs['trust_remote_code'] = True

    # Load model based on device
    if device.type == 'cpu':
        # Use float32 for CPU and apply dynamic quantization
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.float32,
            **load_kwargs,
        )
        model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
    elif device.type == 'mps':
        # Use bfloat16 for MPS
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,
            **load_kwargs,
        ).to(device)

    model.eval()

    MODEL = model


async def cleanup_auto_model() -> None:
    """Clear model from memory, important for Apple Silicon"""
    global MODEL, TOKENIZER
    if torch.backends.mps.is_available():
        torch.mps.empty_cache()
    del MODEL
    del TOKENIZER


def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf")):
    """
    Filter a distribution of logits using top-k and nucleus (top-p) filtering.
    """
    if top_k > 0:
        values, _ = torch.topk(logits, top_k)
        kth_value = values[..., -1, None]
        logits = torch.where(logits < kth_value, torch.full_like(logits, filter_value), logits)

    if top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
        sorted_indices_to_remove = cumulative_probs > top_p
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0
        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits


async def stream_chat_response(
    prompt: str,
    tokenizer: PreTrainedTokenizerFast,
    model,
    stopping_strings: list[str],
    max_new_tokens: int = 100,
    temperature: float = 0.5,
    top_k: int = 50,
    top_p: float = 0.9,
    repetition_penalty: float = 1.5,
    repetition_window: int = 10,
):
    device = next(model.parameters()).device
    eos_token_id = tokenizer.eos_token_id
    inputs = tokenizer(prompt, return_tensors='pt')
    input_ids = inputs['input_ids'].to(device)
    attention_mask = inputs['attention_mask'].to(device)
    full_generated_ids = input_ids
    previous_generated_text = ''
    generated_tokens = []

    for _ in range(max_new_tokens):
        with torch.no_grad():
            if device.type == 'cuda':
                with torch.autocast(device_type='cuda', dtype=torch.float16):
                    outputs = model(full_generated_ids, attention_mask=attention_mask)
            elif device.type == 'mps':
                with torch.autocast(device_type='mps', dtype=torch.bfloat16):
                    outputs = model(full_generated_ids, attention_mask=attention_mask)
            else:  # CPU
                outputs = model(full_generated_ids, attention_mask=attention_mask)

        next_token_logits = outputs.logits[:, -1, :]
        # Apply repetition penalty
        if repetition_penalty != 1.0:
            for token in set(generated_tokens[-20:]):
                next_token_logits[:, token] /= repetition_penalty

        scaled_logits = next_token_logits / temperature
        filtered_logits = top_k_top_p_filtering(scaled_logits[0], top_k=top_k, top_p=top_p)
        probabilities = torch.softmax(filtered_logits, dim=-1)
        next_token = torch.multinomial(probabilities, num_samples=1).unsqueeze(0)
        current_token = next_token.item()

        full_generated_ids = torch.cat([full_generated_ids, next_token], dim=-1)
        attention_mask = torch.cat([attention_mask, torch.ones_like(next_token)], dim=-1)
        generated_tokens.append(current_token)

        if current_token == eos_token_id:
            break

        current_generated_text = tokenizer.decode(
            full_generated_ids[0][input_ids.shape[1] :].cpu(), skip_special_tokens=True
        )

        # Check stopping conditions
        if any(stop_str in current_generated_text for stop_str in stopping_strings):
            break
        if (
            len(generated_tokens) >= 2 * repetition_window
            and generated_tokens[-repetition_window:] == generated_tokens[-2 * repetition_window : -repetition_window]
        ):
            break

        diff = current_generated_text[len(previous_generated_text) :]
        if diff:
            yield diff
            previous_generated_text = current_generated_text

        if device.type == 'mps':
            await asyncio.sleep(0.001)  # Yield event loop for MPS
        elif device.type == 'cpu':
            await asyncio.sleep(0.005)  # Reduce CPU load
        else:
            await asyncio.sleep(0)

    # Return the final text
    yield '[END]'


async def gpt_question_and_answer(question: str):
    """Stream an answer with repetition penalty and better stopping checks."""

    prompt, stopping_strings = await get_stopping_strings('exNormal', question, context=base_settings.context)
    async for chunk in stream_chat_response(
        prompt,
        TOKENIZER,
        MODEL,
        stopping_strings=stopping_strings,
        max_new_tokens=2000,  # Increase this for longer outputs
        top_p=0.95,
    ):
        yield chunk
Enter fullscreen mode Exit fullscreen mode

prepare_auto_tokenizer_and_model initializes the tokenizer and model. To avoid redundant or repetitive loading, we used global variables and adapted the loading process based on the available device (CPU, MPS, CUDA).

torch.quantization.quantize_dynamic is a nifty way to quantize the model so that it will run faster and require lower memory. If your machine supports cuda, you will need to add your block in the code.

cleanup_auto_model primarily releases the model and tokenizer from memory. This is particularly important on memory-constrained devices like those with Apple Silicon (MPS), where memory leaks can quickly degrade performance.

top_k_top_p_filtering implements two common techniques for controlling the diversity and quality of generated text. Top-k filtering limits the model's choices to the k most likely tokens, while top-p (nucleus) sampling considers the smallest set of tokens whose cumulative probability exceeds p. In simple terms, they help to strike a balance between generating creative and coherent text by preventing the model from generating nonsensical or irrelevant tokens.

The stream_chat_response function is the heart of our real-time chatbot's text generation. It takes a prompt, the model, and configurations to generate streaming text output. For performance, within the generation loop, we:

  • Optimize Device Usage: Move model parameters to the active device for faster access.
  • Disable Gradients: Use torch.no_grad() to skip unnecessary gradient calculations during inference.
  • Enable Auto-Precision: Utilize torch.autocast for faster, mixed-precision operations.

The generation process automatically stops when it encounters our stopping character (code lines 151-152). To ensure smooth streaming, the function also briefly releases memory between tokens. Finally, after generating the complete response, stream_chat_response yields [END] to signal to the frontend that the stream is complete.

Disclaimer: Learning in Progress

As a learner in this field, I welcome any corrections or suggestions regarding my approach. Please feel free to point out any errors, and let's learn together!

gpt_question_and_answer serves as a high-level interface for generating answers to questions. It retrieves the appropriate prompt and stopping strings using get_stopping_strings and then calls stream_chat_response to generate the text. You can modify the parameters here to your taste.

Finally, let's examine the chat_engine.py file. This module leverages pre-trained BERT-based models for extracting answers from a given context.

import asyncio

from transformers import pipeline

from src.utils.base import get_device
from src.utils.settings import base_settings

QA_PIPELINE = None


async def prepare_qa_tokenizer_and_model(model_name: str) -> None:
    """
    Prepare and load pretrained QA pipeline with hardware-specific optimizations.
    """
    global QA_PIPELINE
    if QA_PIPELINE is None:
        QA_PIPELINE = pipeline(
            'question-answering',
            model=model_name,
            tokenizer=model_name,
            device=-1 if get_device()[0].type == 'cpu' else 0,
        )
        base_settings.logger.info('QA pipeline initialized')


async def squad_question_answering(question: str) -> str:
    """Optimized QA"""
    if not base_settings.context:
        return {'error': 'Please upload a document first.'}

    if QA_PIPELINE is None:
        return {'error': 'QA system not initialized'}

    base_settings.logger.info(f'Question: {question}')
    base_settings.logger.info(f'Context: {base_settings.context}')

    try:
        result = await asyncio.to_thread(
            QA_PIPELINE,
            question=question,
            context=base_settings.context,
        )
        return result['answer']

    except Exception as e:
        base_settings.logger.error(f'QA Error: {str(e)}')
        return {'error': 'An error occurred during QA'}
Enter fullscreen mode Exit fullscreen mode

prepare_qa_tokenizer_and_model initializes the question-answering pipeline. The primary motivation behind using a global QA_PIPELINE, as previously stated, is to avoid repeatedly loading the model, which is a resource-intensive operation. In squad_question_answering, a key design decision here is the enforcement of a context. BERT-based models, while powerful, generally perform best when given a specific context to ground their answers. To prevent blocking the main thread, the actual question-answering process is offloaded to a separate asynchronous thread using asyncio.to_thread.

Step 3: Building a React Frontend with Next.js and Tailwind CSS

Home page of the app

While our server backend is functional and can be interacted with via command-line tools like wscat (using a command such as wscat -c ws://localhost:PORT/chat followed by a prompt like {"type": "auto", "question": "Write Python code for Fibonacci sequence"}), this approach is not user-friendly. To make our AI chatbot accessible to a wider audience, including those unfamiliar with the terminal, we need a graphical user interface. We'll leverage Next.js, a React framework known for its performance and developer experience, along with Tailwind CSS for styling.

Brief conversation with the app

Our frontend application consists of a single page with a few key components. Let's start by examining react-frontend/src/app/layout.tsx:

import type { Metadata } from "next";
import { Geist, Geist_Mono } from "next/font/google";
import "katex/dist/katex.min.css";
import "./globals.css";
import ThemeSwitcher from "$/app/ui/layout/ThemeSwitcher";

const geistSans = Geist({
  variable: "--font-geist-sans",
  subsets: ["latin"],
});

const geistMono = Geist_Mono({
  variable: "--font-geist-mono",
  subsets: ["latin"],
});

export const metadata: Metadata = {
  title: "AI Chatbot with Next.js and Python | John Owolabi Idogun",
  description:
    "Build an AI chatbot with Next.js and Python using WebSockets by John Owolabi Idogun.",
};

export default function RootLayout({
  children,
}: Readonly<{
  children: React.ReactNode;
}>) {
  return (
    <html lang="en">
      <body
        className={`${geistSans.variable} ${geistMono.variable} antialiased font-[family-name:var(--font-geist-sans)] bg-[#ffffff] text-[#171717] dark:bg-[#0a0a0a] dark:text-[#ededed] min-h-screen`}
      >
        <ThemeSwitcher />
        <main className="flex flex-col min-h-screen mx-auto max-w-10/12">
          <div className="flex-1 w-full">{children}</div>
        </main>
      </body>
    </html>
  );
}
Enter fullscreen mode Exit fullscreen mode

This layout.tsx file defines the root layout of our Next.js application. It's largely based on the default code generated by create-next-app and enhanced with Tailwind CSS integration. We've also integrated KaTeX for rendering mathematical expressions (remember to install the katex package and its TypeScript definitions, as well as marked.js for Markdown processing). The ThemeSwitcher component, responsible for toggling between light and dark themes, is also included.

Here's the code for the ThemeSwitcher component:

"use client";

import { useState, useEffect } from "react";
import { MoonIcon, SunIcon } from "$/app/ui/icons/base";

export default function ThemeSwitcher() {
  const [theme, setTheme] = useState("light");

  useEffect(() => {
    const savedTheme = localStorage.getItem("theme") || "light";
    setTheme(savedTheme);
    document.documentElement.classList.toggle("dark", savedTheme === "dark");
  }, []);

  const toggleTheme = () => {
    const newTheme = theme === "light" ? "dark" : "light";
    setTheme(newTheme);
    localStorage.setItem("theme", newTheme);
    document.documentElement.classList.toggle("dark");
  };

  return (
    <button
      onClick={toggleTheme}
      className="fixed top-4 right-4 p-2 rounded-full bg-gray-200 dark:bg-gray-800 hover:bg-gray-300 dark:hover:bg-gray-700 transition-colors"
      aria-label="Toggle theme"
    >
      {theme === "light" ? (
        <MoonIcon className="h-5 w-5" />
      ) : (
        <SunIcon className="h-5 w-5" />
      )}
    </button>
  );
}
Enter fullscreen mode Exit fullscreen mode

For Svelte developers, React's useEffect hook serves a similar purpose to Svelte 5's $effect block. Both allow you to run code in response to changes (in useEffect you need to list the dependencies, you don't need that in Svelte), and critically, both provide a safe context for interacting with HTML elements.

Now is the turn is react-frontend/src/app/page.tsx:

"use client";

import { useCallback, useState } from "react";
import ChatContainer from "$/app/ui/chat/ChatContainer";
import ChatInput from "$/app/ui/chat/ChatInput";
import { Logo } from "$/app/ui/icons/base";
import { useWebSocket } from "$/app/lib/hooks/useWebSocket";
import { Message } from "$/app/lib/types";
import { useAutoScroll } from "$/app/lib/hooks/useAutoScroll";
import { BASE_WS_URL } from "./lib/constants";

export default function Home() {
  const [messages, setMessages] = useState<Message[]>([]);
  const scrollRef = useAutoScroll<HTMLDivElement>(messages);

  const handleSend = (message: string, type: string) => {
    const newMessage = {
      id: Date.now(),
      text: message,
      sender: "user" as const,
    };

    // Add a loading message for the bot
    const loadingMessage = {
      id: Date.now() + 1,
      text: "",
      sender: "bot" as const,
      loading: true,
      complete: false,
    };

    setMessages((prev) => [...prev, newMessage, loadingMessage]);
    sendMessage(message, type);
  };

  const handleBotMessage = useCallback(
    (content: string, isComplete?: boolean) => {
      setMessages((prev) => {
        const lastMessage = prev[prev.length - 1];

        if (isComplete && lastMessage?.sender === "bot") {
          const updatedMessages = [...prev];
          updatedMessages[prev.length - 1] = {
            ...lastMessage,
            complete: true,
            loading: false,
          };
          return updatedMessages;
        }

        if (!content) return prev;

        if (
          !lastMessage ||
          lastMessage.sender !== "bot" ||
          lastMessage.complete
        ) {
          return [
            ...prev,
            {
              id: Date.now(),
              text: content,
              sender: "bot",
              complete: false,
              loading: false,
            },
          ];
        }

        const updatedMessages = [...prev];
        updatedMessages[prev.length - 1] = {
          ...lastMessage,
          text: lastMessage.text + content,
          loading: false,
        };

        return updatedMessages;
      });
    },
    []
  );

  const { sendMessage, isConnected, error } = useWebSocket(
    `${BASE_WS_URL}/chat`,
    handleBotMessage
  );

  return (
    <div className="flex flex-col flex-1 h-[calc(100vh-10rem)]">
      {!messages.length ? (
        <div className="flex flex-col items-center justify-center flex-1">
          <div className="flex flex-col items-center max-w-3xl w-full mx-auto">
            <Logo className="h-16 w-16 mb-6 text-[#171717] dark:text-[#ededed]" />
            <p className="text-gray-600 dark:text-gray-400 mb-8">
              Ask me anything! I'm here to help.
            </p>
            <div className="w-full">
              <ChatInput onSend={handleSend} messageCount={messages.length} />
            </div>
          </div>
        </div>
      ) : (
        <>
          <div ref={scrollRef} className="flex-1 overflow-y-auto no-scrollbar">
            <ChatContainer messages={messages} />
          </div>
          <ChatInput onSend={handleSend} messageCount={messages.length} />
        </>
      )}
    </div>
  );
}
Enter fullscreen mode Exit fullscreen mode

This file represents the main page component of our chat application, housing the core logic for message handling and UI rendering. The Home component manages the chat interface, including displaying messages, handling user input, and communicating with the backend. The handleSend function adds a user message and a loading message to the state, while handleBotMessage updates the UI with the bot's responses as they stream in.

The custom useWebSocket hook encapsulates all the WebSocket logic, including connection management, message handling, and error handling:

import { useState, useEffect, useCallback } from "react";

type WebSocketMessage = {
  type: string;
  question: string;
};

export const useWebSocket = (
  url: string,
  onMessage: (content: string, isComplete?: boolean) => void
) => {
  const [socket, setSocket] = useState<WebSocket | null>(null);
  const [isConnected, setIsConnected] = useState(false);
  const [error, setError] = useState<string | null>(null);

  useEffect(() => {
    const ws = new WebSocket(url);

    ws.onopen = () => {
      console.log("WebSocket Connected");
      setIsConnected(true);
      setError(null);
    };

    ws.onmessage = (event) => {
      try {
        const data = JSON.parse(event.data);
        // Handle the streaming response
        if (data.answer === "[END]") {
          onMessage("", true); // Signal completion
        } else {
          onMessage(data.answer, false);
        }
      } catch (e) {
        console.error("Error parsing message:", e);
      }
    };

    ws.onclose = () => {
      console.log("WebSocket Disconnected");
      setIsConnected(false);
      setTimeout(() => setSocket(new WebSocket(url)), 3000);
    };

    ws.onerror = (event) => {
      console.error("WebSocket error:", event);
      setError("WebSocket error occurred");
    };

    setSocket(ws);

    return () => {
      ws.close();
    };
  }, [url, onMessage]);

  const sendMessage = useCallback(
    (message: string, type: string) => {
      if (socket && isConnected) {
        const payload: WebSocketMessage = {
          type: type,
          question: message,
        };
        socket.send(JSON.stringify(payload));
      } else {
        console.log("Socket not ready:", {
          isConnected,
          socketExists: !!socket,
        });
      }
    },
    [socket, isConnected]
  );

  return { sendMessage, isConnected, error };
};
Enter fullscreen mode Exit fullscreen mode

handleSend function adds a temporary "loading" message to the chat interface. This is a simple but effective UI trick to provide immediate feedback to the user while waiting for the AI bot's response. Without this, the user might perceive a delay or lack of responsiveness which is unwanted. handleBotMessage function is designed to handle the streaming responses from the AI bot. It efficiently updates the chat interface by appending new content to the last bot message. The isComplete flag, triggered by the "[END]" signal from the backend, ensures that the loading indicator is removed when the bot finishes generating its response. Why useCallback in handleBotMessage? Its primary reason is to prevent unnecessary re-renders of components that depend on these functions and it does that by memoizing them so that they only change when their dependencies change.

To wrap up, let's look at the react-frontend/src/app/ui/chat/ChatContainer.tsx and react-frontend/src/app/ui/chat/ChatInput.tsx.

import React from "react";
import ChatMessage from "$/app/ui/chat/ChatMessage";
import { Message } from "$/app/lib/types";

interface ChatContainerProps {
  messages: Message[];
}

const ChatContainer: React.FC<ChatContainerProps> = ({ messages }) => {
  return (
    <div className="flex flex-col h-full overflow-y-auto p-4">
      <div className="flex-1 overflow-y-scroll">
        {messages.map((message) => (
          <ChatMessage key={message.id} message={message} />
        ))}
      </div>
    </div>
  );
};

export default ChatContainer;
Enter fullscreen mode Exit fullscreen mode

The ChatContainer component renders the list of ChatMessage components. It's a straightforward component that iterates over the messages and displays each one.

import { marked } from "marked";
import { Message } from "$/app/lib/types";
import { ThinkingAnimation } from "$/app/ui/reusables";
import "katex/dist/katex.min.css";
import katex from "katex";
import hljs from "highlight.js";
import "highlight.js/styles/base16/horizon-dark.min.css";

// Helper function to preprocess Unicode characters
const preprocessUnicode = (text: string): string => {
  // Handle escaped Unicode sequences
  const unescaped = text.replace(
    /\\u\{?([a-fA-F0-9]{4,6})\}?/g,
    (_, codePoint) => String.fromCodePoint(parseInt(codePoint, 16))
  );

  return unescaped;
};

marked.setOptions({
  gfm: true,
  breaks: true,
  pedantic: false,
});

// Custom renderer to handle streaming better
const renderer = new marked.Renderer();

// Add math support
const mathRenderer = {
  name: "math",
  level: "inline",
  start(src: string) {
    return src.match(/\$/)?.index;
  },
  tokenizer(src: string) {
    const match = src.match(/^\$\$([^$\n]+?)\$\$|^\$([^$\n]+?)\$/);
    if (match) {
      const isDisplay = match[0].startsWith("$$");
      return {
        type: "math",
        raw: match[0],
        text: (isDisplay ? match[1] : match[2]).trim(),
        isDisplay,
      };
    }
  },
  renderer(token: any) {
    try {
      return katex.renderToString(token.text, {
        throwOnError: false,
        displayMode: token.isDisplay,
      });
    } catch (err) {
      return token.raw;
    }
  },
};

const codeHighlightExtension = {
  name: "code-highlight",
  level: "block",
  start(src: string) {
    return src.match(/^```
{% endraw %}
/)?.index;
  },
  tokenizer(src: string) {
    const match = src.match(/^
{% raw %}
```(\S*)\n([\s\S]*?)```
{% endraw %}
/);
    if (match) {
      return {
        type: "code-highlight",
        raw: match[0],
        lang: match[1],
        text: match[2].trim(),
      };
    }
  },
  renderer(token: any) {
    if (token.lang && hljs.getLanguage(token.lang)) {
      try {
        const highlighted = hljs.highlight(token.text, {
          language: token.lang,
          ignoreIllegals: true,
        }).value;
        return {% raw %}`<pre><code class="hljs language-${token.lang}">${highlighted}</code></pre>`{% endraw %};
      } catch (err) {
        console.error("Highlight.js error:", err);
      }
    }
    return {% raw %}`<pre><code>${token.text}</code></pre>`{% endraw %};
  },
};

marked.use({
  extensions: [mathRenderer, codeHighlightExtension],
});

interface ChatMessageProps {
  message: Message;
}

export default function ChatMessage({ message }: ChatMessageProps) {
  return (
    <div
      className={{% raw %}`flex ${
        message.sender === "user" ? "justify-end" : "justify-start"
      } mb-4`{% endraw %}}
    >
      <div
        className={{% raw %}`max-w-[80%] p-3 rounded-lg ${
          message.sender === "user"
            ? "bg-[#f5f5f5] text-[#171717] dark:bg-[#1a1a1a] dark:text-[#ededed]"
            : "bg-[#fafafa] text-[#171717] dark:bg-[#141414] dark:text-[#ededed]"
        }`{% endraw %}}
      >
        {message.loading ? (
          <ThinkingAnimation />
        ) : (
          <div className="prose article-content max-w-none animate-fade-in">
            {message.sender === "bot" ? (
              <span
                dangerouslySetInnerHTML={{
                  __html: marked(preprocessUnicode(message.text), { renderer }),
                }}
              />
            ) : (
              <span
                dangerouslySetInnerHTML={{
                  __html: marked(preprocessUnicode(message.text), { renderer }),
                }}
              />
            )}
          </div>
        )}
      </div>
    </div>
  );
}
{% raw %}

Enter fullscreen mode Exit fullscreen mode

The ChatMessage component is responsible for rendering individual chat messages. The key feature of this component is its use of marked.js to render Markdown content, with extensions for syntax highlighting (using highlight.js) and math rendering (using KaTeX). The component also includes logic to display a "thinking" animation while the bot is generating a response.

Lastly, let's look at react-frontend/src/app/ui/chat/ChatInput.tsx.

It provides the user interface for entering and sending messages. It includes a text input, controls for toggling "Masked" and "Auto" modes, and a file upload button (you must select the masked mode to upload). The component was inspired by X's Grok 3, 😉.

An important to note is that in handleFileUpload, I used a NextJS action (uploadFiles) to communicate with the server for files upload:


typescript
"use server";

import { BASE_API_URL } from "$/app/lib/constants";

export async function uploadFiles(formData: FormData) {
  try {
    const response = await fetch(`${BASE_API_URL}/api/extract`, {
      method: "POST",
      body: formData,
    });

    if (!response.ok) {
      throw new Error("Upload failed");
    }

    return await response.json();
  } catch (error) {
    console.error("Upload error:", error);
    throw error;
  }
}


Enter fullscreen mode Exit fullscreen mode

The key reason for using a server action is to avoid CORS errors such as Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote resource at .... By executing the upload logic on the server, we bypass the browser's same-origin policy and can communicate with the backend API without requiring CORS configuration.

I am sorry for the long article. I didn't want to split so I can be forced to just finish it at a go. There are still a couple of cleanups to do but I will leave those to you. Bye for now.

Outro

Enjoyed this article? I'm a Software Engineer, Technical Writer, and Technical Support Engineer actively seeking new opportunities, particularly in areas related to web security, finance, healthcare, and education. If you think my expertise aligns with your team's needs, let's chat! You can find me on LinkedIn and X. I am also an email away.

If you found this article valuable, consider sharing it with your network to help spread the knowledge!

Top comments (2)

Collapse
 
rafde profile image
Rafael De Leon

@sirneij looks like there's something up with your post.

Collapse
 
sirneij profile image
John Owolabi Idogun

@rafde Thank you for bringing it to my attention. It's fixed now.