In plants and animals, self-renewing stem cell populations play fundamental roles in many developmental contexts. Plants differ from most animals in their retained ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems. In seed plants, branching is achieved by stem-cell-containing axillary meristems, which are initiated from a leaf axil meristematic cell population originally detached from the shoot apical meristem. It remains unclear how the meristematic cell fate is maintained. Here, we show that ARABIDOPSISTHALIANAHOMEOBOXGENE1 (ATH1) maintains the meristem marker gene SHOOT MERISTEMLESS (STM) expression in the leaf axil to enable meristematic cell fate maintenance. Furthermore, ATH1 protein interacts with STM protein to form a STM self-activation loop. Genetic and biochemical data suggest that ATH1 anchors STM to activate STM as well as other axillary meristem regulatory genes. This auto-regulation allows the STM locus to remain epigenetically active. Taken together, our findings provide a striking example of a self-activation loop that maintains the flexibility required for stem cell niche re-establishment during organogenesis. The neural stem cells (NSCs) residing in the olfactory epithelium (OE) regenerate damaged olfactory sensory neurons throughout adulthood. The accessibility and availability of these NSCs in living individuals, including humans, makes them a promising candidate for harvesting their potential for cell replacement therapies. However, this requires an in-depth understanding of their developmental potential after grafting. Here, we investigated the developmental potential and plasticity of mouse OE-derived NSCs after grafting into the adult subventricular zone (SVZ) neurogenic niche. Our results showed that OE-derived NSCs integrate and proliferate just like endogenous SVZ stem cells, migrate with similar dynamics as endogenous neuroblasts toward the olfactory bulb, and mature and acquire similar electrophysiological properties as endogenous adult-born bulbar interneurons. These results reveal the developmental potential and plasticity of OE-derived NSCs in vivo and show that they can respond to heterotopic neurogenic cues to adapt their phenotype and become functional neurons in ectopic brain regions. Epithelial to mesenchymal transition (EMT) is a biological process involved in tissue morphogenesis and disease that causes dramatic changes in cell morphology, migration, proliferation, and gene expression. click here The retinal pigment epithelium (RPE), which supports the neural retina, can undergo EMT, producing fibrous epiretinal membranes (ERMs) associated with vision-impairing clinical conditions, such as macular pucker and proliferative vitreoretinopathy (PVR). We found that co-treatment with TGF-β and TNF-α (TNT) accelerates EMT in adult human RPE stem cell-derived RPE cell cultures. We captured the global epigenomic and transcriptional changes elicited by TNT treatment of RPE and identified putative active enhancers associated with actively transcribed genes, including a set of upregulated transcription factors that are candidate regulators. We found that the vitamin B derivative nicotinamide downregulates these key transcriptional changes, and inhibits and partially reverses RPE EMT, revealing potential therapeutic routes to benefit patients with ERM, macular pucker and PVR. Yes-associated protein (YAP) is known to promote the stemness of multiple stem cell types, including pluripotent stem cells, while also antagonizing pluripotency during early embryogenesis. How YAP accomplishes these distinct functions remains unclear. Here, we report that, depending on the specific cells in which it is expressed, YAP could exhibit opposing effects on pluripotency induction from mouse somatic cells. Specifically, YAP inhibits pluripotency induction cell-autonomously but promotes it non-cell-autonomously. For its non-cell-autonomous role, YAP alters the expression of many secreted and matricellular proteins, including CYR61. YAP's non-cell-autonomous promoting effect could be recapitulated by recombinant CYR61 and abrogated by CYR61 depletion. Thus, we define a YAP-driven effect on enhancing pluripotency induction largely mediated by CYR61. Our work highlights the importance of considering the distinct contributions from heterologous cell types in deciphering cell fate control mechanisms and calls for careful re-examination of the co-existing bystander cells in complex cultures and tissues. We previously discovered in mouse adipocytes an lncRNA (the homolog of human LINC00116) regulating adipogenesis that contains a highly conserved coding region. Here, we show human protein expression of a peptide within LINC00116, and demonstrate that this peptide modulates triglyceride clearance in human adipocytes by regulating lipolysis and mitochondrial β-oxidation. This gene has previously been identified as mitoregulin (MTLN). We conclude that MTLN has a regulatory role in adipocyte metabolism as demonstrated by systemic lipid phenotypes in knockout mice. We also assert its adipocyte-autonomous phenotypes in both isolated murine adipocytes as well as human stem cell-derived adipocytes. MTLN directly interacts with the β subunit of the mitochondrial trifunctional protein, an enzyme critical in the β-oxidation of long-chain fatty acids. Our human and murine models contend that MTLN could be an avenue for further therapeutic research, albeit not without caveats, for example, by promoting white adipocyte triglyceride clearance in obese subjects. Neurofibromatosis type 1 (NF1) is a common neurodevelopmental disorder caused by a spectrum of distinct germline NF1 gene mutations, traditionally viewed as equivalent loss-of-function alleles. To specifically address the issue of mutational equivalency in a disease with considerable clinical heterogeneity, we engineered seven isogenic human induced pluripotent stem cell lines, each with a different NF1 patient NF1 mutation, to identify potential differential effects of NF1 mutations on human central nervous system cells and tissues. Although all mutations increased proliferation and RAS activity in 2D neural progenitor cells (NPCs) and astrocytes, we observed striking differences between NF1 mutations on 2D NPC dopamine levels, and 3D NPC proliferation, apoptosis, and neuronal differentiation in developing cerebral organoids. Together, these findings demonstrate differential effects of NF1 gene mutations at the cellular and tissue levels, suggesting that the germline NF1 gene mutation is one factor that underlies clinical variability.click here
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)