Both systems exhibited increased NPS intensity with increasing gain, while median filtering lowered the NPS. The DQE of each system increased with increasing gain, and at the maximum gain levels the Gen3 system had a low-frequency DQE of 0.31%, while the Gen2+ system had a value of 1.44%. However, at a higher frequency of 0.4 mm-1, these values became 0.54% and 0.03%. Filtering improved DQE for the Gen3 system and reduced DQE for the Gen2+ system and had a mix of detrimental and beneficial qualitative effects by decreasing the spatial resolution and sharpness but also substantially lowering noise. This methodology for DQE measurement allowed for quantitative comparison between Cherenkov imaging cameras and improvements to their sensitivity, and yielded the first formal assessment of Cherenkov image formation efficiency.A variety of approaches have been used to model the dynamics of a single, isolated bubble nucleated by a microsecond length high-amplitude ultrasound pulse (e.g. a histotripsy pulse). Until recently, the lack of single-bubble experimental radius vs. time data for bubble dynamics under a well-characterized driving pressure has limited model validation efforts. This study uses radius vs. time measurements of single, spherical histotripsy-nucleated bubbles in water to quantitatively compare and validate a variety of bubble dynamics modeling approaches, including compressible and incompressible models as well as different thermal models. A strategy for inferring an analytic representation of histotripsy waveforms directly from experimental radius vs. time and cavitation threshold data is presented. We compare distributions of a calculated validation metric obtained for each model applied to 88 experimental data sets. There is minimal distinction ( less then 1%) among the modeling approaches for compressibility and thermal effects considered in this study. These results suggest that our proposed strategy to infer the waveform, combined with simple models minimizing parametric uncertainty and computational resource demands accurately represent single-bubble dynamics in histotripsy, including at and near the maximum bubble radius. Remaining sources of parametric and model-based uncertainty are discussed.Identification of prostate gold fiducial markers in magnetic resonance imaging (MRI) images is challenging when CT images are not available, due to misclassifications from intra-prostatic calcifications. It is also a time consuming task and automated identification methods have been suggested as an improvement for both objectives. Multi-echo gradient echo (MEGRE) images have been utilized for manual fiducial identification with 100% detection accuracy. The aim is therefore to develop an automatic deep learning based method for fiducial identification in MRI images intended for MRI-only prostate radiotherapy. MEGRE images from 326 prostate cancer patients with fiducials were acquired on a 3T MRI, post-processed with N4 bias correction, and the fiducial center of mass (CoM) was identified. A 9 mm radius sphere was created around the CoM as ground truth. A deep learning HighRes3DNet model for semantic segmentation was trained using image augmentation. The model was applied to 39 MRI-only patients and 3D probabilertain.In contrast to conventional radiotherapy, spatiotemporal fractionation (STF) delivers a distinct dose distribution in each fraction. The aim is to increase the therapeutic window by simultaneously achieving partial hypofractionation in the tumour along with near uniform fractionation in normal tissues. STF has been studied in silico under the assumption that different parts of the tumour can be treated in different fractions. Here, we develop an experimental setup for testing this key assumption on the preclinical level using high-precision partial tumour irradiation in an experimental animal model. We further report on an initial proof-of-concept experiment. We consider a reductionist model of STF in which the tumour is divided in half and treated with two complementary partial irradiations separated by 24 h. Precise irradiation of both tumour halves is facilitated by the image-guided small animal radiation research platform X-RAD SmART. To assess the response of tumours to partial irradiations, tumour growtents with longer follow-up and varying fractionation schemes are needed to provide additional support for STF.
Monte Carlo (MC) track structure codes are commonly used for predicting energy deposition and radiation-induced DNA damage at the nanometer scale. Various simulation parameters such as physics model, DNA model, and direct damage threshold have been developed. check details The differences in adopted parameters lead to disparity in calculation results, which requires quantitative evaluation.
Three simulation configurations were implemented in TOPAS-nBio MC toolkit to investigate the impact of physics models, DNA model, and direct damage threshold on the prediction of energy deposition and DNA damage. Dose point kernels (DPKs) of electrons and nanometer-sized volumes irradiated with electrons, protons, and alpha particles were utilized to evaluate the impact of physics models on energy deposition. Proton irradiation of plasmid DNA was used to investigate the disparity in single-strand break and double-strand break (DSB) yields caused by differences in physics models, DNA models, and direct damage thresholds.
Electron D.
All the physics models, DNA models, and direct damage thresholds investigated in this study are applicable to predict energy deposition and DNA damage. Although the choice of parameters can lead to disparity in simulation results, which serves as a reference for future studies.Magnetic tunneling junction (MTJ) materials such as CoFeB, Co, Pt, MgO, and the hard mask material such as W and TiN were etched with a reactive ion beam etching (RIBE) system using H2/NH3. By using gas mixtures of H2 and NH3, especially with the H2/NH3( 21) ratio, higher etch rates of MTJ related materials and higher etch selectivities over mask materials (>30) could be observed compared to those etching using pure H2( no etching) and NH3. In addition, no significant chemical and physical damages were observed on etched magnetic materials surfaces and, for CoPt and MTJ nanoscale patterns etched by the H2/NH3( 21) ion beam, highly anisotropic etch profiles >83° with no sidewall redeposition could be observed. The higher etch rates of magnetic materials such as CoFeB by the H2/NH3( 21) ion beam compared to those by H2 ion beam or NH3 ion beam are believed to be related to the formation of volatile metal hydrides (MH, M = Co, Fe, etc) through the reduction of M-NHx( x = 1 ∼ 3) formed in the CoFeB surface by the exposure to NH3 ion beam.check details
Top comments (0)