import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
Define a Transformer model for reasoning with multi-modal support
class AGITransformer(nn.Module):
def init(self, input_dim, hidden_dim, output_dim):
super(AGITransformer, self).init()
self.embedding = nn.Linear(input_dim, hidden_dim)
self.transformer = nn.Transformer(
d_model=hidden_dim,
nhead=4,
num_encoder_layers=4,
num_decoder_layers=4,
batch_first=True # Ensure batch-first format
)
self.output_layer = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.embedding(x).unsqueeze(0) # Add batch dimension
x = self.transformer(x, x)
x = self.output_layer(x.squeeze(0)) # Remove batch dimension
return x
Memory system with prioritized experience retention
class Memory:
def init(self):
self.store = []
def remember(self, state, action, reward):
self.store.append((state, action, reward))
self.store.sort(key=lambda x: x[2], reverse=True) # Prioritize high rewards
if len(self.store) > 10000:
self.store.pop(-1) # Remove lowest priority experiences
def retrieve(self):
return random.sample(self.store, min(10, len(self.store))) if self.store else [(None, None, 0)]
Goal-based reinforcement learning agent with self-optimization
class AGIAgent:
def init(self, input_dim, hidden_dim, output_dim):
self.model = AGITransformer(input_dim, hidden_dim, output_dim)
self.memory = Memory()
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
self.criterion = nn.MSELoss()
self.goal = None # Internal goal system
def choose_action(self, state):
state_tensor = torch.tensor(state, dtype=torch.float32)
with torch.no_grad():
action_values = self.model(state_tensor)
return torch.argmax(action_values).item()
def train(self):
if len(self.memory.store) < 10:
return # Not enough experiences yet
for state, action, reward in self.memory.retrieve():
state_tensor = torch.tensor(state, dtype=torch.float32)
predicted_rewards = self.model(state_tensor)
target = predicted_rewards.clone()
target[action] = reward
loss = self.criterion(predicted_rewards, target.detach())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def set_goal(self, new_goal):
"""Set a new internal goal for strategic planning."""
self.goal = new_goal
print(f"New goal set: {self.goal}")
def adjust_learning(self):
"""Meta-learning: Adjust learning rate based on recent success."""
if self.memory.store and np.mean([r[2] for r in self.memory.store[-10:]]) > 0.5:
for param_group in self.optimizer.param_groups:
param_group['lr'] *= 1.1 # Increase learning rate if performing well
elif self.memory.store:
for param_group in self.optimizer.param_groups:
param_group['lr'] *= 0.9 # Decrease if struggling
Example environment interaction
if name == "main":
agent = AGIAgent(input_dim=10, hidden_dim=128, output_dim=4)
agent.set_goal("Maximize positive rewards while exploring efficiently.")
for episode in range(1000): # Extended interaction loop for deeper learning
state = np.random.rand(10)
action = agent.choose_action(state)
reward = np.random.rand() * (1 if action % 2 == 0 else -1) # Structured reward
agent.memory.remember(state, action, reward)
agent.train()
agent.adjust_learning() # Optimize learning process dynamically
print("Training completed. The AGI model has learned from experience.")
Top comments (0)