We further synthesized various other monolayer TMD films, including molybdenum disulfide, tungsten disulfide, and tungsten diselenide, to demonstrate the broad applicability of the proposed approach.A systematic investigation examining the origins of structural distortions in rutile-related ternary uranium AUO4 oxides using a combination of high-resolution structural and spectroscopic measurements supported by ab initio calculations is presented. The structures of β-CdUO4, MnUO4, CoUO4, and MgUO4 are determined at high precision by using a combination of neutron powder diffraction (NPD) and synchrotron X-ray powder diffraction (S-XRD) or single crystal X-ray diffraction. The structure of β-CdUO4 is best described by space group Cmmm whereas MnUO4, CoUO4, and MgUO4 are described by the lower symmetry Ibmm space group and are isostructural with the previously reported β-NiUO4 [Murphy et al. Inorg. Chem.2018, 57, 13847]. X-ray absorption spectroscopy (XAS) analysis shows all five oxides contain hexavalent uranium. The difference in space group can be understood on the basis of size mismatch between the A2+ and U6+ cations whereby unsatisfactory matching results in structural distortions manifested through tilting of the AO6 polyhedra, leading to a change in symmetry from Cmmm to Ibmm. Such tilts are absent in the Cmmm structure. selleck chemical Heating the Ibmm AUO4 oxides results in reduction of the tilt angle. This is demonstrated for MnUO4 where in situ S-XRD measurements reveal a second-order phase transition to Cmmm near T = 200 °C. Based on the extrapolation of variable temperature in situ S-XRD data, CoUO4 is predicted to undergo a continuous phase transition to Cmmm at ∼1475 °C. Comparison of the measured and computed data highlights inadequacies in the DFT+U approach, and the conducted analysis should guide future improvements in computational methods. The results of this investigation are discussed in the context of the wider AUO4 family of oxides.Aluminum (Al) can actively support plasmonic response in the ultraviolet (UV) range compared to noble metals (e.g., Au, Ag) and thus has broad applications including UV sensing, displays, and photovoltaics. High-quality Al films with no oxidation are essential and critical in these applications. However, Al is very prone to fast oxidation in air, which critically depends on the fabrication process. Here, we report that by leveraging the in situ sputter etching and sputter deposition of a 1 nm tetrahedral amorphous carbon (ta-C) film on the Al nanostructures, Al plasmonic activity can be improved. The prior sputter etching process greatly reduces the oxidized layer of the Al films, and the subsequent sputter deposition of ta-C keeps Al oxidation-free. The ta-C film outperforms the naturally passivated Al2O3 layer on the Al film because the ta-C film has a denser structure, higher permittivity, and better biocompatibility. Therefore, it can effectively improve the plasmonic response of Al and be beneficial to molecule sensing, which is proved in our experiments and is also verified in simulations. Our results can enable the various applications based on plasmon resonance in the UV range.The structure of matter at the nanoscale, in particular that of amorphous metallic alloys, is of vital importance for functionalization. With the availability of synchrotron radiation, it is now possible to visualize the internal features of metallic samples without physically destroying them. Methods based on computed tomography have recently been employed to explore the local features. Tomographic reconstruction, while it is relatively uncomplicated for crystalline materials, may generate undesired artifacts when applied to featureless amorphous or nanostructured metallic alloys. In this study we show that X-ray diffraction computed nanotomography can provide accurate details of the internal structure of a metallic glass. We demonstrate the power of the method by applying it to a hierarchically phase-separated amorphous sample with a small volume fraction of crystalline inclusions, focusing the X-ray beam to 500 nm and ensuring a sub-micrometer 2D resolution via the number of scans.A new scheme is proposed for modeling molecular nonadiabatic dynamics near metal surfaces. The charge-transfer character of such dynamics is exploited to construct an efficient reduced representation for the electronic structure. In this representation, the fewest switches surface hopping (FSSH) approach can be naturally modified to include electronic relaxation (ER). The resulting FSSH-ER method is valid across a wide range of coupling strengths as supported by tests applied to the Anderson-Holstein model for electron transfer. Future work will combine this scheme with ab initio electronic structure calculations.The development of novel electrocatalysts, especially Pt-free electrocatalysts, is of great significance for evolving hydrogen fuel cells. Two-dimensional materials have many advantages, such as large specific surface area, abundant active edges, and adjustable electronic structure, which provide broad prospects for studying high-performance electrocatalysts. In this paper, Cu2-xS@Au2S@Au nanoplates (NPs) were synthesized by cation exchange, which showed good catalytic performance toward the hydrogen evolution reaction (HER). Dark-field microscopy can help observe the process of cation exchange in real time to precisely control the synthesis of the composite materials. The synthesized Cu2-xS@Au2S@Au nanoplates (NPs) exhibited greatly enhanced plasmonic emission, resulting in accelerated chemical conversion and improved HER efficiency. Under 532 nm laser excitation, the overpotential of the HER shifted from 152 to 96 mV at a current density of -10 mA cm-2. The plasmonic nanocatalysts show exciting prospects in the field of new energy resources.The fast measurement of fibrinogen is essential in evaluating life-threatening sepsis and cardiovascular diseases. Here, we aim to utilize biomimetic plasmonic Au nanoparticles using red blood cell membranes (RBCM-AuNPs) and demonstrate nanoscale coagulation-inspired fibrinogen detection via cross-linking between RBCM-AuNPs. The proposed biomimetic RBCM-AuNPs are highly suitable for fibrinogen detection because hemagglutination, occurring in the presence of fibrinogen, induces a shift in the localized surface plasmon resonance of the NPs. Specifically, when the two ends of the fibrinogen protein are bound to receptors on separate RBCM-AuNPs, cross-linking of the RBCM-AuNPs occurs, yielding a corresponding plasmon shift within 10 min. This coagulation-inspired fibrinogen detection method, with a low sample volume, high selectivity, and high speed, could facilitate the diagnosis of sepsis and cardiovascular diseases.selleck chemical
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)