This post summarises a range of commonly used attributes of a pandas DataFrame object.
Using this DataFrame as an example:
import pandas as pd
df = pd.DataFrame({
'name': ["A", "B"],
'value': [1,2]
})
1. Core Attributes
Attribute |
Description |
Output |
.shape |
Returns a tuple representing the dimensionality of the DataFrame in the form (number_of_rows, number_of_columns) . |
print(df.shape)
# Output: (2,2)
|
.columns |
Returns an Index object containing the column labels of the DataFrame |
print(df.columns)
# Output: Index(['name', 'value'], dtype='object')
|
.index |
Represents the row labels of the DataFrame, encapsulated in an Index object. |
print(df.index)
# Output: RangeIndex(start=0, stop=2, step=1)
|
.dtypes |
Provides the data type of each column in the DataFrame. |
print(df.dtypes)
# Output
name object
value int64
dtype: object
|
2. Data Inspection Attributes
Attribute |
Description |
Output |
.values |
Returns a NumPy array representation of the DataFrame's data. |
print(df.values)
# Output:
[['A' 1]
['B' 2]]
|
.size |
Returns the total number of elements in the DataFrame (calculated as rows x columns). |
print(df.size)
# Output: 4
|
.ndim |
Returns the number of dimensions of the DataFrame. For DataFrames, this is always 2. |
print(df.ndim)
# Output: 2
|
.empty |
Returns True if the DataFrame is empty (ie. has no elements), otherwise False . |
print(pd.DataFrame().empty)
# Output: True
|
3. Others
Attribute |
Description |
Output |
.T (Transpose) |
Returns the transpose of the DataFrame, swapping rows with columns. |
print(df.values)
name A B
value 1 2
|
Top comments (0)