DEV Community

Vind Snyder
Vind Snyder

Posted on

Drinking water in hydroxylated it surfaces: Work associated with adhesion, interfacial entropy, as well as droplet wetting.

Palaeoenvironmental proxies suggest that the Tràng An water deer occupied cooler, but not necessarily drier, conditions than today. We consider if the specimens represent extirpated Pleistocene populations or indicate a previously unrecognized, longer-standing southerly distribution with possible implications for the conservation of the species in the future.Flapping wings have attracted significant interest for use in miniature unmanned flying vehicles. Although numerous studies have investigated the performance of flapping wings under quiescent conditions, effects of freestream disturbances on their performance remain under-explored. In this study, we experimentally investigated the effects of uniform vertical inflows on flapping wings using a Reynolds-scaled apparatus operating in water at Reynolds number ≈ 3600. The overall lift and drag produced by a flapping wing were measured by varying the magnitude of inflow perturbation from J Vert = -1 (downward inflow) to J Vert = 1 (upward inflow), where J Vert is the ratio of the inflow velocity to the wing's velocity. The interaction between flapping wing and downward-oriented inflows resulted in a steady linear reduction in mean lift and drag coefficients, C ¯ L and C ¯ D , with increasing inflow magnitude. While a steady linear increase in C ¯ L and C ¯ D was noted for upward-oriented inflows between 0 0.7, a significant unsteady wing-wake interaction occurred when 0.3 ≤ J Vert less then 0.7, which caused large variations in instantaneous forces over the wing and led to a reduction in mean performance. These findings highlight asymmetrical effects of vertically oriented perturbations on the performance of flapping wings and pave the way for development of suitable control strategies.Individuals are expected to manage their social relationships to maximize fitness returns. For example, reports of some mammals and birds offering unsolicited affiliation to distressed social partners (commonly termed 'consolation') are argued to illustrate convergent evolution of prosocial traits across divergent taxa. However, most studies cannot discriminate between consolation and alternative explanations such as self-soothing. Crucially, no study that controls for key confounds has examined consolation in the wild, where individuals face more complex and dangerous environments than in captivity. Controlling for common confounds, we find that male jackdaws (Corvus monedula) respond to their mate's stress-states, but not with consolation. Instead, they tended to decrease affiliation and partner visit rate in both experimental and natural contexts. check details This is striking because jackdaws have long-term monogamous relationships with highly interdependent fitness outcomes, which is precisely where theory predicts consolation should occur. Our findings challenge common conceptions about where consolation should evolve, and chime with concerns that current theory may be influenced by anthropomorphic expectations of how social relationships should be managed. To further our understanding of the evolution of such traits, we highlight the need for our current predictive frameworks to incorporate the behavioural trade-offs inherent to life in the wild.Male walruses produce some of the longest continuous reproductive displays known among mammals to convey their physical fitness to potential rivals and possibly to potential mates. Here, we document the ability of a captive walrus to produce intense, rhythmic sounds through a non-vocal pathway involving deliberate, regular collision of the fore flippers. High-speed videography linked to an acoustic onset marker revealed sound production through cavitation, with the acoustic impulse generated by each forceful clap exceeding a peak-to-peak sound level of 200 dB re. 1 µPa. This clapping display is in some ways quite similar to the knocking display more commonly associated with walruses in rut but is produced through a very different mechanism and with much higher amplitudes. While this clapping behaviour has not yet been documented in wild individuals, it has been observed among other mature male walruses living in human care. Production of intense sounds through cavitation has previously been documented only in crustaceans but may also be an effective means of sound production for some aquatic mammals.If sexual signals are costly, covariance between signal expression and fitness is expected. Signal-fitness covariance is important, because it can contribute to the maintenance of genetic variation in signals that are under natural or sexual selection. Chemical signals, such as female sex pheromones in moths, have traditionally been assumed to be species-recognition signals, but their relationship with fitness is unclear. Here, we test whether chemical, conspecific mate finding signals covary with fitness in the moth Heliothis subflexa. Additionally, as moth signals are synthesized de novo every night, the maintenance of the signal can be costly. Therefore, we also hypothesized that fitness covaries with signal stability (i.e. lack of temporal intra-individual variation). We measured among- and within-individual variation in pheromone characteristics as well as fecundity, fertility and lifespan in two independent groups that differed in the time in between two pheromone samples. In both groups, we found fitness to be correlated with pheromone amount, composition and stability, supporting both our hypotheses. This study is, to our knowledge, the first to report a correlation between fitness and sex pheromone composition in moths, supporting evidence of condition-dependence and highlighting how signal-fitness covariance may contribute to heritable variation in chemical signals both among and within individuals.In aviation, gliding is the most economical mode of flight explicitly appreciated by natural fliers. They achieve it by high-performance wing structures evolved over millions of years in nature. Among other prehistoric beings, locust is a perfect example of such natural glider capable of endured transatlantic flights that could inspire a practical solution to achieve similar capabilities on micro aerial vehicles. An investigation in this study demonstrates the effects of haemolymph on the flexibility of several flying insect wings proving that many species exist with further simplistic yet well-designed wing structures. However, biomimicry of such aerodynamic and structural properties is hindered by the limitations of modern as well as conventional fabrication technologies in terms of availability and precision, respectively. Therefore, here we adopt finite-element analysis to investigate the manufacturing-worthiness of a three-dimensional digitally reconstructed locust wing, and propose novel combinations of economical and readily available manufacturing methods to develop the model into prototypes that are structurally similar to their counterparts in nature while maintaining the optimum gliding ratio previously obtained in the aerodynamic simulations.check details

Top comments (0)