*Memos:
-
My post explains ColorJitter() about
brightness
argument. -
My post explains ColorJitter() about
saturation
argument. -
My post explains ColorJitter() about
hue
argument. - My post explains OxfordIIITPet().
ColorJitter() can randomly change the brightness, contrast, saturation and hue of an image as shown below:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ColorJitter
origin_data = OxfordIIITPet(
root="data",
transform=None
)
contrast1_1origin_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[1, 1])
)
contrast0_5_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[0, 5])
# transform=ColorJitter(contrast=4)
)
contrast0_1_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[0, 1])
)
contrast1_5_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[1, 5])
)
contrast08_08_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[0.8, 0.8])
)
contrast06_06_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[0.6, 0.6])
)
contrast04_04_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[0.4, 0.4])
)
contrast02_02_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[0.2, 0.2])
)
contrast0_0_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[0, 0])
)
contrast2_2_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[2, 2])
)
contrast4_4_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[4, 4])
)
contrast8_8_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[8, 8])
)
contrast16_16_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[16, 16])
)
contrast50_50_data = OxfordIIITPet(
root="data",
transform=ColorJitter(contrast=[50, 50])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=contrast1_1origin_data,
main_title="contrast1_1origin_data")
show_images1(data=contrast0_5_data, main_title="contrast0_5_data")
show_images1(data=contrast0_1_data, main_title="contrast0_1_data")
show_images1(data=contrast1_5_data, main_title="contrast1_5_data")
print()
show_images1(data=contrast1_1origin_data,
main_title="contrast1_1origin_data")
show_images1(data=contrast08_08_data, main_title="contrast08_08_data")
show_images1(data=contrast06_06_data, main_title="contrast06_06_data")
show_images1(data=contrast04_04_data, main_title="contrast04_04_data")
show_images1(data=contrast02_02_data, main_title="contrast02_02_data")
show_images1(data=contrast0_0_data, main_title="contrast0_0_data")
print()
show_images1(data=contrast1_1origin_data,
main_title="contrast1_1origin_data")
show_images1(data=contrast2_2_data, main_title="contrast2_2_data")
show_images1(data=contrast4_4_data, main_title="contrast4_4_data")
show_images1(data=contrast8_8_data, main_title="contrast8_8_data")
show_images1(data=contrast16_16_data, main_title="contrast16_16_data")
show_images1(data=contrast50_50_data, main_title="contrast50_50_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, b=0, c=0, s=0, h=0):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
cj = ColorJitter(brightness=b, contrast=c, # Here
saturation=s, hue=h)
plt.imshow(X=cj(im)) # Here
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="contrast1_1origin_data", c=[1, 1])
show_images2(data=origin_data, main_title="contrast0_5_data", c=[0, 5])
# ↑ show_images2(data=origin_data, main_title="contrast4_data", c=4)
show_images2(data=origin_data, main_title="contrast0_1_data", c=[0, 1])
show_images2(data=origin_data, main_title="contrast1_5_data", c=[1, 5])
print()
show_images2(data=origin_data, main_title="contrast1_1origin_data", c=[1, 1])
show_images2(data=origin_data, main_title="contrast08_08_data", c=[0.8, 0.8])
show_images2(data=origin_data, main_title="contrast06_06_data", c=[0.6, 0.6])
show_images2(data=origin_data, main_title="contrast04_04_data", c=[0.4, 0.4])
show_images2(data=origin_data, main_title="contrast02_02_data", c=[0.2, 0.2])
show_images2(data=origin_data, main_title="contrast0_0_data", c=[0, 0])
print()
show_images2(data=origin_data, main_title="contrast1_1origin_data", c=[1, 1])
show_images2(data=origin_data, main_title="contrast2_2_data", c=[2, 2])
show_images2(data=origin_data, main_title="contrast4_4_data", c=[4, 4])
show_images2(data=origin_data, main_title="contrast8_8_data", c=[8, 8])
show_images2(data=origin_data, main_title="contrast16_16_data", c=[16, 16])
show_images2(data=origin_data, main_title="contrast50_50_data", c=[50, 50])
Top comments (0)