*Memos:
- My post explains OxfordIIITPet().
Grayscale() can convert an image to grayscale as shown below:
*Memos:
- The 1st argument for initialization is
num_output_channels
(Optional-Default:1
-Type:int
). *It must be1
or3
. - The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import Grayscale
gs = Grayscale()
gs = Grayscale(num_output_channels=1)
gs
# Grayscale(num_output_channels=1)
gs.num_output_channels
# 1
origin_data = OxfordIIITPet(
root="data",
transform=None
)
noc1_data = OxfordIIITPet( # `noc` is num_output_channels.
root="data",
transform=Grayscale(num_output_channels=1)
)
noc3_data = OxfordIIITPet(
root="data",
transform=Grayscale(num_output_channels=3)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=noc1_data, main_title="noc1_data")
show_images1(data=noc3_data, main_title="noc3_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, noc=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if noc:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
gs = Grayscale(num_output_channels=noc)
plt.imshow(X=gs(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="noc1_data", noc=1)
show_images2(data=origin_data, main_title="noc3_data", noc=3)
Top comments (0)