*Memos:
-
My post explains RandAugment() about
magnitude
argument. - My post explains OxfordIIITPet().
RandAugment() can randomly augment an image as the alternative of AutoAugment() as shown below:
*Memos:
- The 1st argument for initialization is
num_ops
(Optional-Default:2
-Type:int
). *It must be0 <= x
. - The 2nd argument for initialization is
magnitude
(Optional-Default:9
-Type:int
ortuple
/list
(int
orfloat
)): *Memos:- It must be
0 <= x
and0 < num_magnitude_bins
.
- It must be
- The 3rd argument for initialization is
num_magnitude_bins
(Optional-Default:31
-Type:int
). *It must be1 <= x
. - The 4th argument for initialization is
interpolation
(Optional-Default:InterpolationMode.NEAREST
-Type:InterpolationMode). *If the input is a tensor, onlyInterpolationMode.NEAREST
,InterpolationMode.BILINEAR
can be set to it. - The 5th argument for initialization is
fill
(Optional-Default:0
-Type:int
,float
ortuple
/list
(int
orfloat
)): *Memos:- It can change the background of an image. *The background can be seen when augmenting an image.
- A tuple/list must be the 1D with 1 or 3 elements.
- If all values are
x <= 0
, it's black.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
from torchvision.transforms.functional import InterpolationMode
ra = RandAugment()
ra = RandAugment(num_ops=2, magnitude=9, num_magnitude_bins=31,
interpolation = InterpolationMode.NEAREST,
fill=None)
ra
# RandAugment(interpolation=InterpolationMode.NEAREST,
# num_ops=2, magnitude=9, num_magnitude_bins=31)
ra.num_ops
# 2
ra.magnitude
# 9
ra.num_magnitude_bins
# 31
ra.interpolation
# <InterpolationMode.NEAREST: 'nearest'>
print(ra.fill)
# None
origin_data = OxfordIIITPet(
root="data",
transform=None
)
no0_data = OxfordIIITPet( # `no` is num_ops.
root="data",
transform=RandAugment(num_ops=0)
)
no1_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1)
)
no2_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=2)
)
no5_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=5)
)
no10_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=10)
)
no25_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=25)
)
no50_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=50)
)
no100_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=100)
)
no500_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=500)
)
no1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000)
)
no0m30_data = OxfordIIITPet( # `m` is magnitude.
root="data",
transform=RandAugment(num_ops=0, magnitude=30)
)
no1m30_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1, magnitude=30)
)
no2m30_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=2, magnitude=30)
)
no5m30_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=5, magnitude=30)
)
no10m30_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=10, magnitude=30)
)
no25m30_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=25, magnitude=30)
)
no0nmb1000_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
root="data",
transform=RandAugment(num_ops=0, num_magnitude_bins=1000)
)
no1nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1, num_magnitude_bins=1000)
)
no2nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=2, num_magnitude_bins=1000)
)
no5nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=5, num_magnitude_bins=1000)
)
no10nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=10, num_magnitude_bins=1000)
)
no25nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=25, num_magnitude_bins=1000)
)
no50nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=50, num_magnitude_bins=1000)
)
no100nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=100, num_magnitude_bins=1000)
)
no500nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=500, num_magnitude_bins=1000)
)
no1000nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, num_magnitude_bins=1000)
)
no0m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=0, magnitude=999, num_magnitude_bins=1000)
)
no1m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1, magnitude=999, num_magnitude_bins=1000)
)
no2m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=2, magnitude=999, num_magnitude_bins=1000)
)
no5m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=5, magnitude=999, num_magnitude_bins=1000)
)
no10m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=10, magnitude=999, num_magnitude_bins=1000)
)
no25m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=25, magnitude=999, num_magnitude_bins=1000)
)
no50m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=50, magnitude=999, num_magnitude_bins=1000)
)
no100m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=100, magnitude=999, num_magnitude_bins=1000)
)
no500m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=500, magnitude=999, num_magnitude_bins=1000)
)
no1000m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=999, num_magnitude_bins=1000)
)
no25f150_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=25, fill=150)
)
no25f160_32_240_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=25, fill=[160, 32, 240])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=no0_data, main_title="no0_data")
show_images1(data=no1_data, main_title="no1_data")
show_images1(data=no2_data, main_title="no2_data")
show_images1(data=no5_data, main_title="no5_data")
show_images1(data=no10_data, main_title="no10_data")
show_images1(data=no25_data, main_title="no25_data")
show_images1(data=no50_data, main_title="no50_data")
show_images1(data=no100_data, main_title="no100_data")
show_images1(data=no500_data, main_title="no500_data")
show_images1(data=no1000_data, main_title="no1000_data")
print()
show_images1(data=no0m30_data, main_title="no0m30_data")
show_images1(data=no1m30_data, main_title="no1m30_data")
show_images1(data=no2m30_data, main_title="no2m30_data")
show_images1(data=no5m30_data, main_title="no5m30_data")
show_images1(data=no10m30_data, main_title="no10m30_data")
show_images1(data=no25m30_data, main_title="no25m30_data")
print()
show_images1(data=no0nmb1000_data, main_title="no0nmb1000_data")
show_images1(data=no1nmb1000_data, main_title="no1nmb1000_data")
show_images1(data=no2nmb1000_data, main_title="no2nmb1000_data")
show_images1(data=no5nmb1000_data, main_title="no5nmb1000_data")
show_images1(data=no10nmb1000_data, main_title="no10nmb1000_data")
show_images1(data=no25nmb1000_data, main_title="no25nmb1000_data")
show_images1(data=no50nmb1000_data, main_title="no50nmb1000_data")
show_images1(data=no100nmb1000_data, main_title="no100nmb1000_data")
show_images1(data=no500nmb1000_data, main_title="no500nmb1000_data")
show_images1(data=no1000nmb1000_data, main_title="no1000nmb1000_data")
print()
show_images1(data=no0m999nmb1000_data, main_title="no0m999nmb1000_data")
show_images1(data=no1m999nmb1000_data, main_title="no1m999nmb1000_data")
show_images1(data=no2m999nmb1000_data, main_title="no2m999nmb1000_data")
show_images1(data=no5m999nmb1000_data, main_title="no5m999nmb1000_data")
show_images1(data=no10m999nmb1000_data, main_title="no10m999nmb1000_data")
show_images1(data=no25m999nmb1000_data, main_title="no25m999nmb1000_data")
show_images1(data=no50m999nmb1000_data, main_title="no50m999nmb1000_data")
show_images1(data=no100m999nmb1000_data, main_title="no100m999nmb1000_data")
show_images1(data=no500m999nmb1000_data, main_title="no500m999nmb1000_data")
show_images1(data=no1000m999nmb1000_data, main_title="no1000m999nmb1000_data")
print()
show_images1(data=no25f150_data, main_title="no25f150_data")
show_images1(data=no25f160_32_240_data, main_title="no25f160_32_240_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, no=2, m=9, nmb=31,
ip=InterpolationMode.NEAREST, f=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
ra = RandAugment(num_ops=no, magnitude=m,
num_magnitude_bins=nmb,
interpolation=ip, fill=f)
plt.imshow(X=ra(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="no0_data", no=0)
show_images2(data=origin_data, main_title="no1_data", no=1)
show_images2(data=origin_data, main_title="no2_data", no=2)
show_images2(data=origin_data, main_title="no5_data", no=5)
show_images2(data=origin_data, main_title="no10_data", no=10)
show_images2(data=origin_data, main_title="no25_data", no=25)
show_images2(data=origin_data, main_title="no50_data", no=50)
show_images2(data=origin_data, main_title="no100_data", no=100)
show_images2(data=origin_data, main_title="no500_data", no=500)
show_images2(data=origin_data, main_title="no1000_data", no=1000)
print()
show_images2(data=origin_data, main_title="no0m30_data", no=0, m=30)
show_images2(data=origin_data, main_title="no1m30_data", no=1, m=30)
show_images2(data=origin_data, main_title="no2m30_data", no=2, m=30)
show_images2(data=origin_data, main_title="no5m30_data", no=5, m=30)
show_images2(data=origin_data, main_title="no10m30_data", no=10, m=30)
show_images2(data=origin_data, main_title="no25m30_data", no=25, m=30)
print()
show_images2(data=origin_data, main_title="no0nmb1000_data", no=0,
nmb=1000)
show_images2(data=origin_data, main_title="no1nmb1000_data", no=1,
nmb=1000)
show_images2(data=origin_data, main_title="no2nmb1000_data", no=2,
nmb=1000)
show_images2(data=origin_data, main_title="no5nmb1000_data", no=5,
nmb=1000)
show_images2(data=origin_data, main_title="no10nmb1000_data", no=10,
nmb=1000)
show_images2(data=origin_data, main_title="no25nmb1000_data", no=25,
nmb=1000)
show_images2(data=origin_data, main_title="no50nmb1000_data", no=50,
nmb=1000)
show_images2(data=origin_data, main_title="no100nmb1000_data", no=100,
nmb=1000)
show_images2(data=origin_data, main_title="no500nmb1000_data", no=500,
nmb=1000)
show_images2(data=origin_data, main_title="no1000nmb1000_data", no=1000,
nmb=1000)
print()
show_images2(data=origin_data, main_title="no0m999nmb1000_data", no=0,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no1m999nmb1000_data", no=1,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no2m999nmb1000_data", no=2,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no5m999nmb1000_data", no=5,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no10m999nmb1000_data", no=10,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no25m999nmb1000_data", no=25,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no50m999nmb1000_data", no=50,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no100m999nmb1000_data", no=100,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no500m999nmb1000_data", no=500,
m=999, nmb=1000)
show_images2(data=origin_data, main_title="no1000m999nmb1000_data", no=1000,
m=999, nmb=1000)
print()
show_images2(data=origin_data, main_title="no25f150_data", no=25, f=150)
show_images2(data=origin_data, main_title="no25f160_32_240_data", no=25,
f=[160, 32, 240])
Top comments (0)