DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandAugment in PyTorch (2)

Buy Me a Coffee

*Memos:

RandAugment() can randomly augment an image as the alternative of AutoAugment() as shown below:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

m0_data = OxfordIIITPet( # `m` is magnitude.
    root="data",
    transform=RandAugment(magnitude=0)
)

m1_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=1)
)

m2_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=2)
)

m5_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=5)
)

m10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=10)
)

m25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=25)
)

no1000m0_data = OxfordIIITPet( # `no` is num_ops.
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=0)
)

no1000m1_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=1)
)

no1000m2_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=2)
)

no1000m5_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=5)
)

no1000m10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=10)
)

no1000m25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=25)
)

m0nmb1000_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
    root="data",
    transform=RandAugment(magnitude=0, num_magnitude_bins=1000)
)

m1nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=1, num_magnitude_bins=1000)
)

m2nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=2, num_magnitude_bins=1000)
)

m5nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=5, num_magnitude_bins=1000)
)

m10nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=10, num_magnitude_bins=1000)
)

m25nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=25, num_magnitude_bins=1000)
)

m50nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=50, num_magnitude_bins=1000)
)

m100nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=100, num_magnitude_bins=1000)
)

m500nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=500, num_magnitude_bins=1000)
)

m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=999, num_magnitude_bins=1000)
)

no1000m0nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=0, num_magnitude_bins=1000)
)

no1000m1nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=1, num_magnitude_bins=1000)
)

no1000m2nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=2, num_magnitude_bins=1000)
)

no1000m5nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=5, num_magnitude_bins=1000)
)

no1000m10nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=10, num_magnitude_bins=1000)
)

no1000m25nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=25, num_magnitude_bins=1000)
)

no1000m50nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=50, num_magnitude_bins=1000)
)

no1000m100nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=100, num_magnitude_bins=1000)
)

no1000m500nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=500, num_magnitude_bins=1000)
)

no1000m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=999, num_magnitude_bins=1000)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=m0_data, main_title="m0_data")
show_images1(data=m1_data, main_title="m1_data")
show_images1(data=m2_data, main_title="m2_data")
show_images1(data=m5_data, main_title="m5_data")
show_images1(data=m10_data, main_title="m10_data")
show_images1(data=m25_data, main_title="m25_data")
print()
show_images1(data=no1000m0_data, main_title="no1000m0_data")
show_images1(data=no1000m1_data, main_title="no1000m1_data")
show_images1(data=no1000m2_data, main_title="no1000m2_data")
show_images1(data=no1000m5_data, main_title="no1000m5_data")
show_images1(data=no1000m10_data, main_title="no1000m10_data")
show_images1(data=no1000m25_data, main_title="no1000m25_data")
print()
show_images1(data=m0nmb1000_data, main_title="m0nmb1000_data")
show_images1(data=m1nmb1000_data, main_title="m1nmb1000_data")
show_images1(data=m2nmb1000_data, main_title="m2nmb1000_data")
show_images1(data=m5nmb1000_data, main_title="m5nmb1000_data")
show_images1(data=m10nmb1000_data, main_title="m10nmb1000_data")
show_images1(data=m25nmb1000_data, main_title="m25nmb1000_data")
show_images1(data=m50nmb1000_data, main_title="m50nmb1000_data")
show_images1(data=m100nmb1000_data, main_title="m100nmb1000_data")
show_images1(data=m500nmb1000_data, main_title="m500nmb1000_data")
show_images1(data=m999nmb1000_data, main_title="m999nmb1000_data")
print()
show_images1(data=no1000m0nmb1000_data, main_title="no1000m0nmb1000_data")
show_images1(data=no1000m1nmb1000_data, main_title="no1000m1nmb1000_data")
show_images1(data=no1000m2nmb1000_data, main_title="no1000m2nmb1000_data")
show_images1(data=no1000m5nmb1000_data, main_title="no1000m5nmb1000_data")
show_images1(data=no1000m10nmb1000_data, main_title="no1000m10nmb1000_data")
show_images1(data=no1000m25nmb1000_data, main_title="no1000m25nmb1000_data")
show_images1(data=no1000m50nmb1000_data, main_title="no1000m50nmb1000_data")
show_images1(data=no1000m100nmb1000_data, main_title="no1000m100nmb1000_data")
show_images1(data=no1000m500nmb1000_data, main_title="no1000m500nmb1000_data")
show_images1(data=no1000m999nmb1000_data, main_title="no1000m999nmb1000_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, no=2, m=9, nmb=31,
                 ip=InterpolationMode.NEAREST, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = RandAugment(num_ops=no, magnitude=m,
                             num_magnitude_bins=nmb,
                             interpolation=ip, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="m0_data", m=0)
show_images2(data=origin_data, main_title="m1_data", m=1)
show_images2(data=origin_data, main_title="m2_data", m=2)
show_images2(data=origin_data, main_title="m5_data", m=5)
show_images2(data=origin_data, main_title="m10_data", m=10)
show_images2(data=origin_data, main_title="m25_data", m=25)
print()
show_images2(data=origin_data, main_title="no1000m0_data", no=1000, m=0)
show_images2(data=origin_data, main_title="no1000m1_data", no=1000, m=1)
show_images2(data=origin_data, main_title="no1000m2_data", no=1000, m=2)
show_images2(data=origin_data, main_title="no1000m5_data", no=1000, m=5)
show_images2(data=origin_data, main_title="no1000m10_data", no=1000, m=10)
show_images2(data=origin_data, main_title="no1000m25_data", no=1000, m=25)
print()
show_images2(data=origin_data, main_title="m0nmb1000_data", m=0, nmb=1000)
show_images2(data=origin_data, main_title="m1nmb1000_data", m=1, nmb=1000)
show_images2(data=origin_data, main_title="m2nmb1000_data", m=2, nmb=1000)
show_images2(data=origin_data, main_title="m5nmb1000_data", m=5, nmb=1000)
show_images2(data=origin_data, main_title="m10nmb1000_data", m=10, nmb=1000)
show_images2(data=origin_data, main_title="m25nmb1000_data", m=25, nmb=1000)
show_images2(data=origin_data, main_title="m50nmb1000_data", m=50, nmb=1000)
show_images2(data=origin_data, main_title="m100nmb1000_data", m=100, nmb=1000)
show_images2(data=origin_data, main_title="m500nmb1000_data", m=500, nmb=1000)
show_images2(data=origin_data, main_title="m999nmb1000_data", m=999, nmb=1000)
print()
show_images2(data=origin_data, main_title="no1000m0nmb1000_data", no=1000, m=0,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m1nmb1000_data", no=1000, m=1,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m2nmb1000_data", no=1000, m=2,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m5nmb1000_data", no=1000, m=5,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m10nmb1000_data", no=1000,
             m=10, nmb=1000)
show_images2(data=origin_data, main_title="no1000m25nmb1000_data", no=1000,
             m=25, nmb=1000)
show_images2(data=origin_data, main_title="no1000m50nmb1000_data", no=1000,
             m=50, nmb=1000)
show_images2(data=origin_data, main_title="no1000m100nmb1000_data", no=1000,
             m=100, nmb=1000)
show_images2(data=origin_data, main_title="no1000m500nmb1000_data", no=1000,
             m=500, nmb=1000)
show_images2(data=origin_data, main_title="no1000m999nmb1000_data", no=1000,
             m=999, nmb=1000)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Top comments (0)