DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandomAffine in PyTorch (5)

Buy Me a Coffee

*Memos:

RandomAffine() can do random rotation or random affine transformation for an image as shown below:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAffine

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

shear0_0_0_0origin_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 0, 0])
)

shear10_10_10_10_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[10, 10, 10, 10])
    # transform=RandomAffine(degrees=[0, 0], shear=[-170, -170, -170, -170])
)

shear20_20_20_20_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[20, 20, 20, 20])
    # transform=RandomAffine(degrees=[0, 0], shear=[-160, -160, -160, -160])
)

shear30_30_30_30_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[30, 30, 30, 30])
    # transform=RandomAffine(degrees=[0, 0], shear=[-150, -150, -150, -150])
)

shear40_40_40_40_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[40, 40, 40, 40])
    # transform=RandomAffine(degrees=[0, 0], shear=[-140, -140, -140, -140])
)

shear50_50_50_50_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[50, 50, 50, 50])
    # transform=RandomAffine(degrees=[0, 0], shear=[-130, -130, -130, -130])
)

shear60_60_60_60_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[60, 60, 60, 60])
    # transform=RandomAffine(degrees=[0, 0], shear=[-120, -120, -120, -120])
)

shear70_70_70_70_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[70, 70, 70, 70])
    # transform=RandomAffine(degrees=[0, 0], shear=[-110, -110, -110, -110])
)

shear80_80_80_80_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[80, 80, 80, 80])
    # transform=RandomAffine(degrees=[0, 0], shear=[-100, -100, -100, -100])
)

shear90_90_90_90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[90, 90, 90, 90])
    # transform=RandomAffine(degrees=[0, 0], shear=[-90, -90, -90, -90])
)

shearn10n10n10n10_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-10, -10, -10, -10])
    # transform=RandomAffine(degrees=[0, 0], shear=[-170, -170, 170, 170])
)

shearn20n20n20n20_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-20, -20, -20, -20])
    # transform=RandomAffine(degrees=[0, 0], shear=[160, 160, 160, 160])
)

shearn30n30n30n30_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-30, -30, -30, -30])
    # transform=RandomAffine(degrees=[0, 0], shear=[150, 150, 150, 150])
)

shearn40n40n40n40_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-40, -40, -40, -40])
    # transform=RandomAffine(degrees=[0, 0], shear=[140, 140, 140, 140])
)

shearn50n50n50n50_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-50, -50, -50, -50])
    # transform=RandomAffine(degrees=[0, 0], shear=[130, 130, 130, 130])
)

shearn60n60n60n60_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-60, -60, -60, -60])
    # transform=RandomAffine(degrees=[0, 0], shear=[120, 120, 120, 120])
)

shearn70n70n70n70_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-70, -70, -70, -70])
    # transform=RandomAffine(degrees=[0, 0], shear=[110, 110, 110, 110])
)

shearn80n80n80n80_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-80, -80, -80, -80])
    # transform=RandomAffine(degrees=[0, 0], shear=[100, 100, 100, 100])
)

shearn90n90n90n90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[-90, -90, -90, -90])
    # transform=RandomAffine(degrees=[0, 0], shear=[90, 90, 90, 90])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=shear0_0_0_0origin_data, 
             main_title="shear0_0_0_0origin_data")
show_images1(data=shear10_10_10_10_data, main_title="shear10_10_10_10_data")
show_images1(data=shear20_20_20_20_data, main_title="shear20_20_20_20_data")
show_images1(data=shear30_30_30_30_data, main_title="shear30_30_30_30_data")
show_images1(data=shear40_40_40_40_data, main_title="shear40_40_40_40_data")
show_images1(data=shear50_50_50_50_data, main_title="shear50_50_50_50_data")
show_images1(data=shear60_60_60_60_data, main_title="shear60_60_60_60_data")
show_images1(data=shear70_70_70_70_data, main_title="shear70_70_70_70_data")
show_images1(data=shear80_80_80_80_data, main_title="shear80_80_80_80_data")
show_images1(data=shear90_90_90_90_data, main_title="shear90_90_90_90_data")
print()
show_images1(data=shear0_0_0_0origin_data, 
             main_title="shear0_0_0_0origin_data")
show_images1(data=shearn10n10n10n10_data,
             main_title="shearn10n10n10n10_data")
show_images1(data=shearn20n20n20n20_data,
             main_title="shearn20n20n20n20_data")
show_images1(data=shearn30n30n30n30_data,
             main_title="shearn30n30n30n30_data")
show_images1(data=shearn40n40n40n40_data,
             main_title="shearn40n40n40n40_data")
show_images1(data=shearn50n50n50n50_data, 
             main_title="shearn50n50n50n50_data")
show_images1(data=shearn60n60n60n60_data, 
             main_title="shearn60n60n60n60_data")
show_images1(data=shearn70n70n70n70_data, 
             main_title="shearn70n70n70n70_data")
show_images1(data=shearn80n80n80n80_data, 
             main_title="shearn80n80n80n80_data")
show_images1(data=shearn90n90n90n90_data, 
             main_title="shearn90n90n90n90_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, d=0, t=None,
                 sc=None, sh=None, f=0, c=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        ra = RandomAffine(degrees=d, translate=t, scale=sc,
                          shear=sh, center=c, fill=f)
        plt.imshow(X=ra(im))
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="shear0_0_0_0origin_data",
             d=[0, 0], sh=[0, 0, 0, 0])
show_images2(data=origin_data, main_title="shear10_10_10_10_data",
             d=[0, 0], sh=[10, 10, 10, 10])
show_images2(data=origin_data, main_title="shear20_20_20_20_data",
             d=[0, 0], sh=[20, 20, 20, 20])
show_images2(data=origin_data, main_title="shear30_30_30_30_data",
             d=[0, 0], sh=[30, 30, 30, 30])
show_images2(data=origin_data, main_title="shear40_40_40_40_data",
             d=[0, 0], sh=[40, 40, 40, 40])
show_images2(data=origin_data, main_title="shear50_50_50_50_data",
             d=[0, 0], sh=[50, 50, 50, 50])
show_images2(data=origin_data, main_title="shear60_60_60_60_data",
             d=[0, 0], sh=[60, 60, 60, 60])
show_images2(data=origin_data, main_title="shear70_70_70_70_data",
             d=[0, 0], sh=[70, 70, 70, 70])
show_images2(data=origin_data, main_title="shear80_80_80_80_data",
             d=[0, 0], sh=[80, 80, 80, 80])
show_images2(data=origin_data, main_title="shear90_90_90_90_data",
             d=[0, 0], sh=[90, 90, 90, 90])
print()
show_images2(data=origin_data, main_title="shear0_0_0_0origin_data",
             d=[0, 0], sh=[0, 0, 0, 0])
show_images2(data=origin_data, main_title="shearn10n10n10n10_data",
             d=[0, 0], sh=[-10, -10, -10, -10])
show_images2(data=origin_data, main_title="shearn20n20n20n20_data",
             d=[0, 0], sh=[-20, -20, -20, -20])
show_images2(data=origin_data, main_title="shearn30n30n30n30_data",
             d=[0, 0], sh=[-30, -30, -30, -30])
show_images2(data=origin_data, main_title="shearn40n40n40n40_data",
             d=[0, 0], sh=[-40, -40, -40, -40])
show_images2(data=origin_data, main_title="shearn50n50n50n50_data",
             d=[0, 0], sh=[-50, -50, -50, -50])
show_images2(data=origin_data, main_title="shearn60n60n60n60_data",
             d=[0, 0], sh=[-60, -60, -60, -60])
show_images2(data=origin_data, main_title="shearn70n70n70n70_data",
             d=[0, 0], sh=[-70, -70, -70, -70])
show_images2(data=origin_data, main_title="shearn80n80n80n80_data",
             d=[0, 0], sh=[-80, -80, -80, -80])
show_images2(data=origin_data, main_title="shearn90n90n90n90_data",
             d=[0, 0], sh=[-90, -90, -90, -90])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Top comments (0)