*Memos:
- My post explains OxfordIIITPet().
RandomPosterize() can randomly posterize an image with a given probability as shown below:
*Memos:
- The 1st argument for initialization is
bits
(Required-Type:int
): *Memos:- It's the number of bits to keep for each channel.
- It must be
x <= 8
.
- The 2nd argument for initialization is
p
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It's the probability of whether an image is posterized or not.
- It must be
0 <= x <= 1
.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomPosterize
rp = RandomPosterize(bits=1)
rp = RandomPosterize(bits=1, p=0.5)
rp
# RandomPosterize(p=0.5, bits=1)
rp.bits
# 1
rp.p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
b8p1origin_data = OxfordIIITPet( # `b` is bits.
root="data",
transform=RandomPosterize(bits=8, p=1)
)
b7p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=7, p=1)
)
b6p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=6, p=1)
)
b5p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=5, p=1)
)
b4p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=4, p=1)
)
b3p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=3, p=1)
)
b2p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=2, p=1)
)
b1p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=1)
)
b0p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=0, p=1)
)
bn1p1_data = OxfordIIITPet( # `n` is negative.
root="data",
transform=RandomPosterize(bits=-1, p=1)
)
bn10p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=-10, p=1)
)
bn100p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=-100, p=1)
)
b1p0_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=0)
)
b1p05_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=0.5)
# transform=RandomPosterize(bits=1)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=b8p1origin_data, main_title="b8p1origin_data")
show_images1(data=b7p1_data, main_title="b7p1_data")
show_images1(data=b6p1_data, main_title="b6p1_data")
show_images1(data=b5p1_data, main_title="b5p1_data")
show_images1(data=b4p1_data, main_title="b4p1_data")
show_images1(data=b3p1_data, main_title="b3p1_data")
show_images1(data=b2p1_data, main_title="b2p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b0p1_data, main_title="b0p1_data")
show_images1(data=bn1p1_data, main_title="bn1p1_data")
show_images1(data=bn10p1_data, main_title="bn10p1_data")
show_images1(data=bn100p1_data, main_title="bn100p1_data")
print()
show_images1(data=b1p0_data, main_title="b1p0_data")
show_images1(data=b1p0_data, main_title="b1p0_data")
show_images1(data=b1p0_data, main_title="b1p0_data")
print()
show_images1(data=b1p05_data, main_title="b1p05_data")
show_images1(data=b1p05_data, main_title="b1p05_data")
show_images1(data=b1p05_data, main_title="b1p05_data")
print()
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, b=None, prob=0):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if b != None:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rp = RandomPosterize(bits=b, p=prob)
plt.imshow(X=rp(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="b8p1origin_data", b=8, prob=1)
show_images2(data=origin_data, main_title="b7p1_data", b=7, prob=1)
show_images2(data=origin_data, main_title="b6p1_data", b=6, prob=1)
show_images2(data=origin_data, main_title="b5p1_data", b=5, prob=1)
show_images2(data=origin_data, main_title="b4p1_data", b=4, prob=1)
show_images2(data=origin_data, main_title="b3p1_data", b=3, prob=1)
show_images2(data=origin_data, main_title="b2p1_data", b=2, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b0p1_data", b=0, prob=1)
show_images2(data=origin_data, main_title="bn1p1_data", b=-1, prob=1)
show_images2(data=origin_data, main_title="bn10p1_data", b=-10, prob=1)
show_images2(data=origin_data, main_title="bn100p1_data", b=-100, prob=1)
print()
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
print()
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
print()
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
Top comments (0)